Search results for " Electronics"

showing 10 items of 580 documents

Highly selective chemical sensing in a luminescent nanoporous magnet.

2012

Among the wide variety of properties of interest that a given material can exhibit, luminescence is attracting an increasing attention due to its potential application in optical devices for lighting equipment and optical storage, [ 1a − c] optical switching, [ 1d ,e] and sensing. [ 1f − i ] At this respect, many scientists, working in the multidisciplinary fi eld of the materials science, have directed their efforts to the obtention of luminescent materials with potential sensing applications. For instance, sensitive and selective detection of gas and vapor phase analytes can result specially interesting because of the variety of applications that can be found in many different fi elds. A …

FabricationMaterials scienceNanotechnologyOptical storagePhotochemistryOptical switchNanoporesMolecular recognitionGeneral Materials ScienceManganesebusiness.industryNanoporousMechanical EngineeringMolecular electronicsCarbon DioxideSpectrometry FluorescenceMechanics of MaterialsMagnetsSolventsQuantum TheoryMetal-organic frameworkAdsorptionGasesPhotonicsbusinessMethaneCopperAdvanced materials (Deerfield Beach, Fla.)
researchProduct

CESAR: Cryogenic Electronics for Space Applications

2013

Ultra-low temperature sensors provide unprecedented performances in X-ray and far infrared astronomy by taking advantage of physical properties of matter close to absolute zero. CESAR is an FP7 funded project started in December 2010, that gathers six European laboratories around the development of high performances cryogenic electronics. The goal of the project is to provide far-IR, X-ray and magnetic sensors with signal-processing capabilities at the heart of the detectors. We present the major steps that constitute the CESAR work, and the main results achieved so far.

Far-infrared bolometersHEMTSNanotechnologyFar-infrared astronomySpace (mathematics)01 natural sciences030218 nuclear medicine & medical imagingNOISE03 medical and health sciencesCryogenic electronics0302 clinical medicineDevelopment (topology)Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesHigh impedance detectorsGeneral Materials ScienceElectronics4.2 KVOLTAGEAerospace engineering010302 applied physicsPhysicsbusiness.industryDetectorX-ray microcalorimetersCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCryogenic electronics · High impedance detectors · X-ray microcalorimeters · Far-infrared bolometers1 KHZ[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]business
researchProduct

Toward Optimal LSTM Neural Networks for Detecting Algorithmically Generated Domain Names

2021

Malware detection is a problem that has become particularly challenging over the last decade. A common strategy for detecting malware is to scan network traffic for malicious connections between infected devices and their command and control (C&C) servers. However, malware developers are aware of this detection method and begin to incorporate new strategies to go unnoticed. In particular, they generate domain names instead of using static Internet Protocol addresses or regular domain names pointing to their C&C servers. By using a domain generation algorithm, the effectiveness of the blacklisting of domains is reduced, as the large number of domain names that must be blocked g…

Feature engineeringGeneral Computer ScienceArtificial neural networkComputer sciencebusiness.industrymalwareDeep learningGeneral EngineeringDeep learningdomain generation algorithmscomputer.software_genreBlacklistDomain (software engineering)TK1-9971ServerMalwareGeneral Materials ScienceNetwork performanceArtificial intelligenceData miningElectrical engineering. Electronics. Nuclear engineeringbusinessLSTMcomputerIEEE Access
researchProduct

Фоторефракция, аномальный фотовольтаический эффект и механизм электропроводности в сегнетокерамике цирконата-титаната свинца, модифицированного ланта…

1979

Advisor: Круминь, Андрис

Ferroelectric сeramicsElectric conductivity:TECHNOLOGY::Electrical engineering electronics and photonics::Electrical engineering [Research Subject Categories]Электрическое полеФоторефракцияСегнетокерамикаЭлектропроводностьСегнетоэлектрикиElektrovadītspējaSegnetoelektriķi
researchProduct

Optical sectioning microscopy through single-shot Lightfield protocol

2020

Optical sectioning microscopy is usually performed by means of a scanning, multi-shot procedure in combination with non-uniform illumination. In this paper, we change the paradigm and report a method that is based in the light field concept, and that provides optical sectioning for 3D microscopy images after a single-shot capture. To do this we fi rst capture multiple orthographic perspectives of the sample by means of Fourier-domain integral microscopy (FiMic). The second stage of our protocol is the application of a novel refocusing algorithm that is able to produce optical sectioning in real time, and with no resolution worsening, in the case of sparse f luorescent samples.We provide the…

FiMicGeneral Computer ScienceOptical sectioningComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technology3d microscopy01 natural sciences010309 opticsOptics0103 physical sciencesMicroscopyGeneral Materials ScienceProtocol (object-oriented programming)Fourier integral microscopebusiness.industryResolution (electron density)Orthographic projectionGeneral EngineeringSingle shotfourier lightfield microscopeGPU computingÒptica021001 nanoscience & nanotechnologySample (graphics)Microscòpialightfield microscopeoptical sectioninglcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologybusinesslcsh:TK1-9971
researchProduct

Why Bring Organic and Molecular Electronics to Spintronics

2015

Organic spintronics field is an emerging field at the frontier between organic chemistry and spintronics. Exploiting the peculiarity of these two fields, it combines the flexibility, versatility and low production cost of organic materials with the nonvolatility, spin degree of freedom and beyond CMOS capabilities offered by spintronics. Before starting the discussion on the organic spintronics field, in this chapter will be provided a brief introduction on organic and molecular electronics and the specificities of molecules. This will help to understand the advantages that molecular systems can bring to spintronics.

Flexibility (engineering)EngineeringBeyond CMOSSpintronicsbusiness.industryProduction costMolecular electronicsNanotechnologyMolecular systemsbusiness
researchProduct

A High-Efficiency, Low-Cost Solution for On-Board Power Converters

2012

Wide-input, low-voltage, and high-current applications are addressed. A single-ended isolated topology which improves the power efficiency, reduces both switching and conduction losses, and heavily lowers the system cost is presented. During each switching cycle, the transformer core reset is provided. The traditional tradeoff between the maximum allowable duty-cycle and the reset voltage is avoided and the off-voltage of active switches is clamped to the input voltage. Therefore, the system cost is heavily reduced and the converter is well suited for wide-input applications. Zero-voltage switching is achieved for active switches, and the power efficiency is greatly improved. In the output …

Forward converterEngineeringArticle Subjectbusiness.industryBuck converterBuck–boost converterĆuk converterConverterspower electronics on-board converters dc-dc convertersInductorSettore ING-INF/01 - ElettronicaBoost converterElectronic engineeringElectrical and Electronic EngineeringbusinessElectrical efficiencyAdvances in Power Electronics
researchProduct

Characterization of clamp-on current transformers under nonsinusoidal conditions

2009

This paper reports the performance of clamp-on current transformers under nonsinusoidal conditions. A set of experimental measurements helped to determine the ratio and the phase errors under two conditions: 1) sinusoidal excitation with frequencies from 45 to 1000 Hz and 2) nonsinusoidal excitation using the fundamental frequency and one harmonic, with adjusted phase shift. It was found that ratio and phase errors are affected by the phase angle between the harmonic and the fundamental and the harmonic amplitude. The effects of conductor location in the current transformer's window and of the air-gap width were also investigated. It was concluded that harmonic phase and ratio errors measur…

Frequency responseMaterials scienceElectric current measurementTransductorAcousticsErrorsTransducersPhase (waves)Energy Engineering and Power TechnologyClamp-on current transformers current transformers (CTs) frequency response power system harmonics transducers.Power transformersDistributed power generationElectric power systemsHarmonic analysisElectric power transmission networksClamp-on current transformersCurrent transformersFrequency responsePower electronicsFrequency measurementElectronic engineeringElectrical and Electronic EngineeringElectrical conductorTomographyComputed tomographyElectric power distributionElectric transformersCircuit faultsFault currentsFundamental frequencyComputerized tomographyFourier seriesCurrent measurementCurrent transformerDiagnostic radiographyElectric instrument transformersElectric frequency measurementPower system harmonicsMedical imagingCurrent transformers (CTs)Air gap (plumbing)Power transmissionElectric network analysisExcitation
researchProduct

Effect of packing on the cluster nature of C nanotubes: An information entropy analysis

2007

The possibility of the existence of single-wall carbon nanotubes (SWNTs) in organic solvents in the form of clusters is discussed. A theory is developed based on a bundlet model for clusters, which enables describing the distribution function of clusters by size. Comparison of the calculated values of solubility with experiments would permit obtaining energetic parameters characterizing the interaction of an SWNT with its surrounding, in a solid or solution. Fullerenes and SWNTs are unique objects, whose behaviour in many physical situations is characterized by remarkable peculiarities. Peculiarities in solutions show up first in that fullerenes and SWNTs represent the only soluble forms of…

FullereneMaterials scienceEntropy productionGeneral EngineeringMolecular electronicsNanotechnologyCarbon nanotubeWeak interactionlaw.inventionDistribution functionlawChemical physicsCluster (physics)Equipartition theoremMicroelectronics Journal
researchProduct

Design of a Programmable and Modular Neuromuscular Electrical Stimulator Integrated Into a Wireless Body Sensor Network

2021

Neuromuscular electrical stimulation finds application in several fields, from basic neurophysiology, to motor rehabilitation and cardiovascular conditioning. Despite the progressively increasing interest in this technique, its State-of-the-Art technology is mainly based on monolithic, mostly wired devices, leading to two main issues. First, these devices are often bulky, limiting their usability in applied contexts. Second, the possibility of interfacing these stimulation devices with external systems for the acquisition of electrophysiological and biomechanical variables to control the stimulation output is often limited. The aim of this work is to describe the design and development of a…

Functional Electrical StimulationGeneral Computer SciencesensoriverkotGeneral Engineeringlangaton tekniikkaElectrical stimulation; functional electrical stimulation; medicalmedical instrumentation for electrical stimulationsähköärsytyshoitomedicalfunctional electrical stimulationTK1-9971rehabilitationhermo-lihastoimintaElectrical stimulationkuntoutusGeneral Materials ScienceElectrical engineering. Electronics. Nuclear engineeringelectrical stimulationmodular wireless systemsneuromuscular systemIEEE Access
researchProduct