Search results for " Estimation"

showing 10 items of 562 documents

Estimation of ordered response models with sample selection

2011

We introduce two new Stata commands for the estimation of an ordered response model with sample selection. The opsel command uses a standard maximum-likelihood approach to fit a parametric specification of the model where errors are assumed to follow a bivariate Gaussian distribution. The snpopsel command uses the semi-nonparametric approach of Gallant and Nychka (1987, Econometrica 55: 363–390) to fit a semiparametric specification of the model where the bivariate density function of the errors is approximated by a Hermite polynomial expansion. The snpopsel command extends the set of Stata routines for semi-nonparametric estimation of discrete response models. Compared to the other semi-n…

EstimationSample selectionHermite polynomialsResponse modelComputer scienceEstimatorSettore SECS-P/05 - EconometriaProbability density functionBivariate analysisst0226 opsel opsel postestimation sneop sneop postestimation snp2 snp2 postestimation snp2s snp2s postestimation snpopsel snpopsel postestimation snp snp postestimation ordered response models sample selection parametric maximum-likelihood estimation semi-nonparametric estimationSet (abstract data type)Mathematics (miscellaneous)StatisticsSettore SECS-P/01 - Economia PoliticaAlgorithmMathematicsParametric statistics
researchProduct

2014

Depressed patients frequently report a subjective slowing of the passage of time. However, experimental demonstrations of altered time perception in depressed patients are not conclusive. We added a timed action task (time-to-contact estimation, TTC) and compared this indirect time perception task to the more direct classical methods of verbal time estimation, time production, and time reproduction. In the TTC estimation task, the deviations of the estimates from the veridical values (relative errors) revealed no differences between depressed patients (n = 22) and healthy controls (n = 22). Neither did the relative errors of the TTC estimates differ between groups. There was a weak trend to…

Estimationmedicine.medical_specialtyTime to contactTime perceptionAudiologyAffect (psychology)behavioral disciplines and activitiesTask (project management)Interval (music)Time estimationmedicinePsychologySocial psychologyGeneral PsychologyDepression (differential diagnoses)Frontiers in Psychology
researchProduct

Mathematical modeling and parameters estimation of a car crash using data-based regressive model approach

2011

Author's version of an article in the journal: Applied Mathematical Modelling. Also available from the publisher at: http://dx.doi.org/10.1016/j.apm.2011.04.024 n this paper we present the application of regressive models to simulation of car-to-pole impacts. Three models were investigated: RARMAX, ARMAX and AR. Their suitability to estimate physical system parameters as well as to reproduce car kinematics was examined. It was found out that they not only estimate the one quantity which was used for their creation (car acceleration) but also describe the car's acceleration, velocity and crush. A virtual experiment was performed to obtain another set of data for use in further research. An A…

Estimationregressive models parameters estimation viscoelastic modeling virtual experimentComputer sciencebusiness.industrySpeech recognitionApplied MathematicsVDP::Technology: 500::Mechanical engineering: 570CrashMachine learningcomputer.software_genreVDP::Mathematics and natural science: 400::Mathematics: 410Modeling and SimulationModelling and SimulationVirtual experimentArtificial intelligencebusinesscomputerApplied Mathematical Modelling
researchProduct

noRANSAC for fundamental matrix estimation

2011

The estimation of the fundamental matrix from a set of corresponding points is a relevant topic in epipolar stereo geometry [10]. Due to the high amount of outliers between the matches, RANSAC-based approaches [7, 13, 29] have been used to obtain the fundamental matrix. In this paper two new contributes are presented: a new normalized epipolar error measure which takes into account the shape of the features used as matches [17] and a new strategy to compare fundamental matrices. The proposed error measure gives good results and it does not depend on the image scale. Moreover, the new evaluation strategy describes a valid tool to compare diffe rent RANSAC-based methods because it does not re…

Evaluation strategyGround truthSettore INF/01 - Informaticabusiness.industryimage features epipolar geometry ransac fundamental matrix estimationEight-point algorithmEpipolar geometryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage scaleRANSACOutlierComputer visionArtificial intelligencebusinessFundamental matrix (computer vision)AlgorithmMathematicsProcedings of the British Machine Vision Conference 2011
researchProduct

Basic Statistical Techniques

2012

Exploratory data analysisData collectionComputer scienceInterval estimationStatisticsData analysisStatistical inferenceSampling (statistics)Statistical and Managerial Techniques for Six Sigma Methodology
researchProduct

FastSLAM 2.0: Least-Squares Approach

2006

In this paper, we present a set of robust and efficient algorithms with O(N) cost for the following situations: object detection with a laser ranger; mobile robot pose estimation and a FastSLAM improved implementation. Objected detection is mainly based on a novel multiple line fitting method, related with walls at the environment. This method assumes that walls at the environment constitute a regular constrained angles. A line-based pose estimation method is also proposed, based on Least-Squares (LS). This method performs the matching of detected lines and estimated map lines and it can provide the global pose estimation under assumption of known Data-Association. FastSLAM 1.0 has been imp…

Extended Kalman filterLine fittingComputer sciencebusiness.industryLine (geometry)Mobile robotComputer visionArtificial intelligencebusiness3D pose estimationPoseLeast squaresObject detection2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
researchProduct

A probabilistic estimation and prediction technique for dynamic continuous social science models: The evolution of the attitude of the Basque Country…

2015

In this paper, a computational technique to deal with uncertainty in dynamic continuous models in Social Sciences is presented.Considering data from surveys,the method consists of determining the probability distribution of the survey output and this allows to sample data and fit the model to the sampled data using a goodness-of-fit criterion based the χ2-test. Taking the fitted parameters that were not rejected by the χ2-test, substituting them into the model and computing their outputs, 95% confidence intervals in each time instant capturing the uncertainty of the survey data (probabilistic estimation) is built. Using the same set of obtained model parameters, a prediction over …

FOS: Computer and information sciencesAttitude dynamicsProbabilistic predictionComputer sciencePopulationDivergence-from-randomness modelSample (statistics)computer.software_genreMachine Learning (cs.LG)Probabilistic estimationSocial scienceeducationProbabilistic relevance modeleducation.field_of_studyApplied MathematicsProbabilistic logicConfidence intervalComputer Science - LearningComputational MathematicsSocial dynamic modelsProbability distributionSurvey data collectionData miningMATEMATICA APLICADAcomputerApplied Mathematics and Computation
researchProduct

Optimized Kernel Entropy Components

2016

This work addresses two main issues of the standard Kernel Entropy Component Analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of by variance as in Kernel Principal Components Analysis. In this work, we propose an extension of the KECA method, named Optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular…

FOS: Computer and information sciencesComputer Networks and CommunicationsKernel density estimationMachine Learning (stat.ML)02 engineering and technologyKernel principal component analysisMachine Learning (cs.LG)Artificial IntelligencePolynomial kernelStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringMathematicsbusiness.industry020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsComputer Science - LearningKernel methodKernel embedding of distributionsVariable kernel density estimationRadial basis function kernelKernel smoother020201 artificial intelligence & image processingArtificial intelligencebusinessSoftwareIEEE Transactions on Neural Networks and Learning Systems
researchProduct

Kernel methods and their derivatives: Concept and perspectives for the earth system sciences.

2020

Kernel methods are powerful machine learning techniques which implement generic non-linear functions to solve complex tasks in a simple way. They Have a solid mathematical background and exhibit excellent performance in practice. However, kernel machines are still considered black-box models as the feature mapping is not directly accessible and difficult to interpret.The aim of this work is to show that it is indeed possible to interpret the functions learned by various kernel methods is intuitive despite their complexity. Specifically, we show that derivatives of these functions have a simple mathematical formulation, are easy to compute, and can be applied to many different problems. We n…

FOS: Computer and information sciencesComputer Science - Machine LearningSupport Vector MachineTheoretical computer scienceComputer scienceEntropyKernel FunctionsNormal Distribution0211 other engineering and technologies02 engineering and technologyMachine Learning (cs.LG)Machine LearningStatistics - Machine LearningSimple (abstract algebra)0202 electrical engineering electronic engineering information engineeringOperator TheoryData ManagementMultidisciplinaryGeographyApplied MathematicsSimulation and ModelingQRDensity estimationKernel methodKernel (statistics)Physical SciencessymbolsMedicine020201 artificial intelligence & image processingAlgorithmsResearch ArticleComputer and Information SciencesScienceMachine Learning (stat.ML)Research and Analysis MethodsKernel MethodsKernel (linear algebra)symbols.namesakeArtificial IntelligenceSupport Vector MachinesHumansEntropy (information theory)Computer SimulationGaussian process021101 geological & geomatics engineeringData VisualizationCorrectionRandom VariablesFunction (mathematics)Probability TheorySupport vector machineAlgebraPhysical GeographyLinear AlgebraEarth SciencesEigenvectorsRandom variableMathematicsEarth SystemsPLoS ONE
researchProduct

Fractional generalized cumulative entropy and its dynamic version

2021

Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fract…

FOS: Computer and information sciencesExponential distributionComputer Science - Information TheoryMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMeasure (mathematics)010305 fluids & plasmas0103 physical sciencesFOS: MathematicsApplied mathematicsAlmost surelyCumulative entropy; Fractional calculus; Stochastic orderings; EstimationEntropy (energy dispersal)010306 general physicsStochastic orderingsMathematicsCentral limit theoremNumerical AnalysisInformation Theory (cs.IT)Applied MathematicsCumulative distribution functionProbability (math.PR)Fractional calculusEmpirical measureFractional calculusModeling and SimulationEstimationCumulative entropyMathematics - ProbabilityCommunications in Nonlinear Science and Numerical Simulation
researchProduct