Search results for " Estimation"
showing 10 items of 562 documents
Multispectral image denoising with optimized vector non-local mean filter
2016
Nowadays, many applications rely on images of high quality to ensure good performance in conducting their tasks. However, noise goes against this objective as it is an unavoidable issue in most applications. Therefore, it is essential to develop techniques to attenuate the impact of noise, while maintaining the integrity of relevant information in images. We propose in this work to extend the application of the Non-Local Means filter (NLM) to the vector case and apply it for denoising multispectral images. The objective is to benefit from the additional information brought by multispectral imaging systems. The NLM filter exploits the redundancy of information in an image to remove noise. A …
Superlinear advantage for exact quantum algorithms
2012
A quantum algorithm is exact if, on any input data, it outputs the correct answer with certainty (probability 1). A key question is: how big is the advantage of exact quantum algorithms over their classical counterparts: deterministic algorithms. For total Boolean functions in the query model, the biggest known gap was just a factor of 2: PARITY of N inputs bits requires $N$ queries classically but can be computed with N/2 queries by an exact quantum algorithm. We present the first example of a Boolean function f(x_1, ..., x_N) for which exact quantum algorithms have superlinear advantage over the deterministic algorithms. Any deterministic algorithm that computes our function must use N qu…
Time Difference of Arrival Estimation from Frequency-Sliding Generalized Cross-Correlations Using Convolutional Neural Networks
2020
The interest in deep learning methods for solving traditional signal processing tasks has been steadily growing in the last years. Time delay estimation (TDE) in adverse scenarios is a challenging problem, where classical approaches based on generalized cross-correlations (GCCs) have been widely used for decades. Recently, the frequency-sliding GCC (FS-GCC) was proposed as a novel technique for TDE based on a sub-band analysis of the cross-power spectrum phase, providing a structured two-dimensional representation of the time delay information contained across different frequency bands. Inspired by deep-learning-based image denoising solutions, we propose in this paper the use of convolutio…
Estimation of causal effects with small data in the presence of trapdoor variables
2021
We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is subject to an implicit functional constraint that is not deducible from conditional independence relations, the estimator of the causal effect can exhibit bias in small samples. This bias is related to variables that we call trapdoor variables. We use simulated data to study different strategies to account for trapdoor variables and suggest how the related trapdoor bias might be minimized. The importance of trapdoor variables in causal effect estimation is illustrated with rea…
Thresholding projection estimators in functional linear models
2008
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squared error of prediction as well as estimators of the derivatives of the regression function. We prove these estimators are minimax and rates of convergence are given for some particular cases.
Estimating with kernel smoothers the mean of functional data in a finite population setting. A note on variance estimation in presence of partially o…
2014
In the near future, millions of load curves measuring the electricity consumption of French households in small time grids (probably half hours) will be available. All these collected load curves represent a huge amount of information which could be exploited using survey sampling techniques. In particular, the total consumption of a specific cus- tomer group (for example all the customers of an electricity supplier) could be estimated using unequal probability random sampling methods. Unfortunately, data collection may undergo technical problems resulting in missing values. In this paper we study a new estimation method for the mean curve in the presence of missing values which consists in…
A Unified SVM Framework for Signal Estimation
2013
This paper presents a unified framework to tackle estimation problems in Digital Signal Processing (DSP) using Support Vector Machines (SVMs). The use of SVMs in estimation problems has been traditionally limited to its mere use as a black-box model. Noting such limitations in the literature, we take advantage of several properties of Mercer's kernels and functional analysis to develop a family of SVM methods for estimation in DSP. Three types of signal model equations are analyzed. First, when a specific time-signal structure is assumed to model the underlying system that generated the data, the linear signal model (so called Primal Signal Model formulation) is first stated and analyzed. T…
The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario
2019
In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product a…
Fast Estimation of Diffusion Tensors under Rician noise by the EM algorithm
2016
Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers in human brain. Spectral data from the displacement distribution of water molecules located in the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a consequence, the recorded magnitude data are corrupted by Rician noise. Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a f…
Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis
2020
Parkinson’s disease is found as a progressive neurodegenerative condition which affects motor circuit by the loss of up to 70% of dopaminergic neurons. Thus, diagnosing the early stages of incidence is of great importance. In this article, a novel chaos-based stochastic model is proposed by combining the characteristics of chaotic firefly algorithm with Kernel-based Naïve Bayes (KNB) algorithm for diagnosis of Parkinson’s disease at an early stage. The efficiency of the model is tested on a voice measurement dataset that is collected from “UC Irvine Machine Learning Repository.” The dynamics of chaos optimization algorithm will enhance the firefly algorithm by introducing six types of chao…