6533b856fe1ef96bd12b32a6

RESEARCH PRODUCT

Time Difference of Arrival Estimation from Frequency-Sliding Generalized Cross-Correlations Using Convolutional Neural Networks

Maximo CobosLuca ComanducciFabio AntonacciAugusto Sarti

subject

FOS: Computer and information sciencesSound (cs.SD)Computer sciencePhase (waves)Distributed microphones02 engineering and technologyConvolutional neural networkComputer Science - Sound030507 speech-language pathology & audiology03 medical and health sciencesAudio and Speech Processing (eess.AS)FOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringGCCRepresentation (mathematics)Signal processingbusiness.industryI.5.4Deep learningConvolutional Neural Networks020206 networking & telecommunicationsTime delay estimationMultilaterationI.2.094A12 68T10LocalizationArtificial intelligence0305 other medical sciencebusinessAlgorithmElectrical Engineering and Systems Science - Audio and Speech ProcessingI.2.0; I.5.4

description

The interest in deep learning methods for solving traditional signal processing tasks has been steadily growing in the last years. Time delay estimation (TDE) in adverse scenarios is a challenging problem, where classical approaches based on generalized cross-correlations (GCCs) have been widely used for decades. Recently, the frequency-sliding GCC (FS-GCC) was proposed as a novel technique for TDE based on a sub-band analysis of the cross-power spectrum phase, providing a structured two-dimensional representation of the time delay information contained across different frequency bands. Inspired by deep-learning-based image denoising solutions, we propose in this paper the use of convolutional neural networks (CNNs) to learn the time-delay patterns contained in FS-GCCs extracted in adverse acoustic conditions. Our experiments confirm that the proposed approach provides excellent TDE performance while being able to generalize to different room and sensor setups.

https://doi.org/10.1109/icassp40776.2020.9053429