0000000000452766
AUTHOR
Fabio Antonacci
Ray-Space-Based Multichannel Nonnegative Matrix Factorization for Audio Source Separation
Nonnegative matrix factorization (NMF) has been traditionally considered a promising approach for audio source separation. While standard NMF is only suited for single-channel mixtures, extensions to consider multi-channel data have been also proposed. Among the most popular alternatives, multichannel NMF (MNMF) and further derivations based on constrained spatial covariance models have been successfully employed to separate multi-microphone convolutive mixtures. This letter proposes a MNMF extension by considering a mixture model with Ray-Space-transformed signals, where magnitude data successfully encodes source locations as frequency-independent linear patterns. We show that the MNMF alg…
Frequency-Sliding Generalized Cross-Correlation: A Sub-Band Time Delay Estimation Approach
The generalized cross correlation (GCC) is regarded as the most popular approach for estimating the time difference of arrival (TDOA) between the signals received at two sensors. Time delay estimates are obtained by maximizing the GCC output, where the direct-path delay is usually observed as a prominent peak. Moreover, GCCs play also an important role in steered response power (SRP) localization algorithms, where the SRP functional can be written as an accumulation of the GCCs computed from multiple sensor pairs. Unfortunately, the accuracy of TDOA estimates is affected by multiple factors, including noise, reverberation and signal bandwidth. In this paper, a sub-band approach for time del…
Wireless Acoustic Sensor Networks and Applications
Open Set Audio Classification Using Autoencoders Trained on Few Data.
Open-set recognition (OSR) is a challenging machine learning problem that appears when classifiers are faced with test instances from classes not seen during training. It can be summarized as the problem of correctly identifying instances from a known class (seen during training) while rejecting any unknown or unwanted samples (those belonging to unseen classes). Another problem arising in practical scenarios is few-shot learning (FSL), which appears when there is no availability of a large number of positive samples for training a recognition system. Taking these two limitations into account, a new dataset for OSR and FSL for audio data was recently released to promote research on solution…
Time Difference of Arrival Estimation from Frequency-Sliding Generalized Cross-Correlations Using Convolutional Neural Networks
The interest in deep learning methods for solving traditional signal processing tasks has been steadily growing in the last years. Time delay estimation (TDE) in adverse scenarios is a challenging problem, where classical approaches based on generalized cross-correlations (GCCs) have been widely used for decades. Recently, the frequency-sliding GCC (FS-GCC) was proposed as a novel technique for TDE based on a sub-band analysis of the cross-power spectrum phase, providing a structured two-dimensional representation of the time delay information contained across different frequency bands. Inspired by deep-learning-based image denoising solutions, we propose in this paper the use of convolutio…