Search results for " Expression"

showing 10 items of 4731 documents

Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance toHyaloperonospora arabidopsidis

2013

Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (N…

0106 biological sciencesArabidopsis thaliana[SDV]Life Sciences [q-bio]ArabidopsisOligosaccharidesPlant Science01 natural sciencesCALCIUM SIGNATURESchemistry.chemical_compoundGene Expression Regulation PlantSYSTEMIC ACQUIRED-RESISTANCEArabidopsisPlant defense against herbivoryArabidopsis thalianaPlant ImmunityGENE-EXPRESSIONCalcium signaling0303 health sciencesIMMUNE-RESPONSESTOBACCO CELLSfood and beveragesCYTOSOLIC CALCIUMElicitorOomycetesReceptors GlutamateBiochemistryHost-Pathogen Interactions[SDE]Environmental SciencesoligogalacturonidesSignal transductionSignal Transductionglutamate receptorHyaloperonospora arabidopsidisBiologyNitric Oxidecalcium signaling03 medical and health sciencesplant defenseGeneticsDNQX[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBOTRYTIS-CINEREA030304 developmental biologyHyaloperonospora arabidopsidisNITRIC-OXIDEArabidopsis ProteinsCell Biologybiology.organism_classificationSALICYLIC-ACIDchemistryPLASMA-MEMBRANEReactive Oxygen Species010606 plant biology & botanyThe Plant Journal
researchProduct

Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters

2012

9 pages; International audience; Nacre of the Pinctada pearl oyster shells is composed of 98% CaCO(3) and 2% organic matrix. The relationship between the organic matrix and the mechanism of nacre formation currently constitutes the main focus regarding the biomineralization process. In this study, we isolated a new nacre matrix protein in P. margaritifera and P. maxima, we called Pmarg- and Pmax-MRNP34 (methionine-rich nacre protein). MRNP34 is a secreted hydrophobic protein, which is remarkably rich in methionine, and which is specifically localised in mineralizing the epithelium cells of the mantle and in the nacre matrix. The structure of this protein is drastically different from those …

0106 biological sciencesBiomineralizationCalcifying mantleMethionine-richMolecular Sequence DataClinical BiochemistryGene ExpressionBiologyMatrix (biology)engineering.materialProteomics010603 evolutionary biology01 natural sciencesBiochemistryLow complexity03 medical and health sciencesPaleontologychemistry.chemical_compoundCalcification PhysiologicMethionineAnimalsAmino Acid SequencePinctada[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsNacre030304 developmental biology0303 health sciencesMethionineViral matrix proteinOrganic ChemistryProteinsEpithelial Cells[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterialsbiology.organism_classificationProtein Structure TertiarychemistryBiochemistryengineeringMolluscMatrix proteinPearlBiomineralizationPinctada
researchProduct

Sex versus parthenogenesis: A transcriptomic approach of photoperiod response in the model aphid Acyrthosiphon pisum (Hemiptera: Aphididae)

2007

International audience; Most aphids develop a cyclic parthenogenesis life-cycle. After several generations of viviparous parthenogenetic females, it follows a single annual generation of sexual individuals, usually in autumn, that mate and lay the sexual eggs. Shortening of photoperiod at the end of the summer is a key factor inducing the sexual response. With the survey here reported we aimed at identifying a collection of candidate genes to participate at some point in the cascade of events that lead to the sexual phenotypes. Following a suppression subtractive hybridization methodology (SSH) on the model aphid Acyrthosiphon pisum, we built and characterised two reciprocal cDNA libraries …

0106 biological sciencesCandidate genePhotoperiodParthenogenesis01 natural sciencesSexual Behavior Animal03 medical and health sciencesGeneticsAnimalsGeneGene Library030304 developmental biologyExpressed Sequence TagsGenetics[SDV.GEN]Life Sciences [q-bio]/Genetics0303 health sciencesAphidbiologyfood and beveragesAphididaeGeneral MedicineParthenogenesisbiology.organism_classificationHemipteraAcyrthosiphon pisum010602 entomologyGene Expression RegulationSuppression subtractive hybridizationAphidsInsect ProteinsGene
researchProduct

The Spodoptera exigua ABCC2 Acts as a Cry1A Receptor Independently of its Nucleotide Binding Domain II

2019

ABC proteins are primary-active transporters that require the binding and hydrolysis of ATP to transport substrates across the membrane. Since the first report of an ABCC2 transporter as receptor of Cry1A toxins, the number of ABC transporters known to be involved in the mode of action of Cry toxins has increased. In Spodoptera exigua, a mutation in the SeABCC2 gene is described as genetically linked to resistance to the Bt-product XentariTM. This mutation affects an intracellular domain involved in ATP binding, but not the extracellular loops. We analyzed whether this mutation affects the role of the SeABCC2 as a functional receptor to Cry1A toxins. The results show that Sf21 cells express…

0106 biological sciencesCell SurvivalHealth Toxicology and Mutagenesislcsh:MedicineReceptors Cell SurfaceATP-binding cassette transporterSpodopteraSpodopteraToxicologymedicine.disease_causeBt resistance01 natural sciencesArticleCell LineHemolysin Proteins03 medical and health sciencesBacterial Proteinsmode of actionGTP-Binding ProteinsATP hydrolysismedicineAnimalsReceptor030304 developmental biology0303 health sciencesMutationBacillus thuringiensis ToxinsbiologyChemistryfungilcsh:Rheterologous expressionTransporterbiology.organism_classificationMultidrug Resistance-Associated Protein 2Cell biologyEndotoxins010602 entomologyCyclic nucleotide-binding domainSf21 cellstruncated transporterInsect ProteinsHeterologous expressionMultidrug Resistance-Associated ProteinsToxins
researchProduct

Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells.

2012

International audience; Endocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associ…

0106 biological sciencesCell signaling[SDV]Life Sciences [q-bio]Recombinant Fusion ProteinseducationBiophysicsGene Expressionbright yellow-2BiologyEndocytosisGenes Plant01 natural sciencesBiochemistryClathrincryptogeinCell LineFungal Proteins03 medical and health sciencesMicroscopy Electron TransmissionStructural BiologyGene expressionTobaccoGeneticscell signalingRNA MessengerMolecular Biology030304 developmental biologyPlant Proteins0303 health sciencesCell growthCell MembraneCell BiologyReceptor-mediated endocytosisPlants Genetically ModifiedClathrinEndocytosisElicitorCell biologyRNA PlantClathrin Heavy Chains[SDE]Environmental Sciencesbiology.proteinClathrin Light ChainsSignal transduction010606 plant biology & botanySignal TransductionFEBS letters
researchProduct

Stimulation of Defense Reactions in Medicago truncatula by Antagonistic Lipopeptides from Paenibacillus sp. Strain B2

2010

ABSTRACT With the aim of obtaining new strategies to control plant diseases, we investigated the ability of antagonistic lipopolypeptides (paenimyxin) from Paenibacillus sp. strain B2 to elicit hydrogen peroxide (H 2 O 2 ) production and several defense-related genes in the model legume Medicago truncatula . For this purpose, M. truncatula cell suspensions were used and a pathosystem between M. truncatula and Fusarium acuminatum was established. In M. truncatula cell cultures, the induction of H 2 O 2 reached a maximum 20 min after elicitation with paenimyxin, whereas concentrations higher than 20 μM inhibited H 2 O 2 induction and this was correlated with a lethal effect. In plant roots in…

0106 biological sciencesChalcone synthaseCell Culture TechniquesPhenylalanine ammonia-lyase01 natural sciencesApplied Microbiology and BiotechnologyPlant RootsMicrobiologyCell wall03 medical and health sciencesPathosystemPaenibacillusLipopeptidesPlant MicrobiologyFusariumGene Expression Regulation Plant030304 developmental biology[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesEcologybiologyfungiPANIBACILLUS SP. STRAIN B2food and beveragesHydrogen Peroxidebiology.organism_classificationMedicago truncatulaCoculture TechniquesInvertaseChitinasebiology.proteinMEDICAGO TRUNCATULAPaenibacillus010606 plant biology & botanyFood ScienceBiotechnology
researchProduct

Changes in carbohydrate metabolism in Plasmopara viticola-infected grapevine leaves.

2011

International audience; The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and-to a larger extent-carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activit…

0106 biological sciencesChlorophyllPhysiologyStarchenzymatic activityhexosesbeta-AmylaseplantGlucose-1-Phosphate Adenylyltransferasetranscriptomic analyse01 natural sciencesinvertasechemistry.chemical_compoundphytopathogenGene Expression Regulation PlantVitisTrehalaseOligonucleotide Array Sequence Analysis0303 health sciencesbiologyfood and beveragesStarchGeneral MedicineEnzymesBiochemistryOomycetesRNA PlantPlasmopara viticolaCarbohydrate metabolism03 medical and health sciencesPlasmopara viticolaADP-glucose pyrophosphorylasePolysaccharidesVignecarbohydrate metabolism[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologytrehalose030304 developmental biologyPlant Diseasesphotosynthesisbiology.organism_classificationtrehalaseTrehaloseEnzyme assayPlant LeavesInvertasechemistryVitis viniferabiology.proteinDowny mildewfungialpha-AmylasesphysiopathologyAgronomy and Crop Science010606 plant biology & botany
researchProduct

2019

PIWI proteins and their guiding Piwi-interacting (pi-) RNAs direct the silencing of target nucleic acids in the animal germline and soma. Although in mammal testes fetal piRNAs are involved in extensive silencing of transposons, pachytene piRNAs have additionally been shown to act in post-transcriptional gene regulation. The bulk of pachytene piRNAs is produced from large genomic loci, named piRNA clusters. Recently, the presence of reversed pseudogenes within piRNA clusters prompted the idea that piRNAs derived from such sequences might direct regulation of their parent genes. Here, we examine primate piRNA clusters and integrated pseudogenes in a comparative approach to gain a deeper unde…

0106 biological sciencesComparative genomicsRegulation of gene expressionTransposable elementendocrine system0303 health sciencesurogenital systemPseudogenePiwi-interacting RNABiology010603 evolutionary biology01 natural sciencesGermline03 medical and health sciencesEvolutionary biologyGeneticsGene silencingGeneEcology Evolution Behavior and Systematics030304 developmental biologyGenome Biology and Evolution
researchProduct

AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7

2005

AbstractIn plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.

0106 biological sciencesCu/Zn superoxide dismutaseChloroplastsSaccharomyces cerevisiae ProteinsMolecular Sequence DataArabidopsisBiophysicsSaccharomyces cerevisiaeMetallo chaperoneChloroplastModels Biological01 natural sciencesBiochemistryGreen fluorescent proteinSuperoxide dismutase03 medical and health sciencesDownregulation and upregulationGene Expression Regulation PlantStructural BiologyOrganelleGeneticsAmino Acid SequenceRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsGene Expression ProfilingGenetic Complementation TestCell BiologyYeastChloroplastProtein TransportBiochemistryChaperone (protein)Mutationbiology.proteinSequence AlignmentCopperMolecular Chaperones010606 plant biology & botanyFEBS Letters
researchProduct

Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

2010

Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari (TM), a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression …

0106 biological sciencesDrug Resistancelcsh:MedicineGene ExpressionInsectaminopeptidase n01 natural sciencesAminopeptidasesHemolysin ProteinsEndotoxinmanduca-sextaBacillus thuringiensisInsect ProteinBiotechnology/Applied Microbiologylcsh:Scienceheliothis-virescensmedia_common0303 health sciencesLarvaMultidisciplinarybiologymediated insect resistanceGenetics and Genomics/Gene ExpressionEcology/Population Ecologybacterial-infectionNoctuidaeInsect ProteinsResearch Articlemedia_common.quotation_subjectAminopeptidaseMolecular Sequence DataBacillus thuringiensisBacterial ProteinSpodopteraSpodopterastem-cell proliferationMicrobiology03 medical and health sciencesMicrobiology/Applied MicrobiologyBacterial ProteinsExiguaBotanyBacillus thuringiensiAnimalscrystal proteinsBIOS Plant Development SystemsAmino Acid Sequencekinase pathways030304 developmental biologyposterior midgutHeliothis virescensBacillus thuringiensis ToxinsAnimaltrichoplusia-nilcsh:RfungiMidgutHemolysin Proteinbiology.organism_classificationEndotoxinsGastrointestinal Tract010602 entomologyPlant Biology/Agricultural Biotechnologylcsh:QSequence Alignment
researchProduct