6533b7d0fe1ef96bd125b033

RESEARCH PRODUCT

Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters

Caroline JoubertCorinne BelliardYannick GueguenCaroline MontagnaniIsabelle Zanella-cléonFrédéric MarinBenjamin MarieAlexandre Tayale

subject

0106 biological sciencesBiomineralizationCalcifying mantleMethionine-richMolecular Sequence DataClinical BiochemistryGene ExpressionBiologyMatrix (biology)engineering.materialProteomics010603 evolutionary biology01 natural sciencesBiochemistryLow complexity03 medical and health sciencesPaleontologychemistry.chemical_compoundCalcification PhysiologicMethionineAnimalsAmino Acid SequencePinctada[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsNacre030304 developmental biology0303 health sciencesMethionineViral matrix proteinOrganic ChemistryProteinsEpithelial Cells[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterialsbiology.organism_classificationProtein Structure TertiarychemistryBiochemistryengineeringMolluscMatrix proteinPearlBiomineralizationPinctada

description

9 pages; International audience; Nacre of the Pinctada pearl oyster shells is composed of 98% CaCO(3) and 2% organic matrix. The relationship between the organic matrix and the mechanism of nacre formation currently constitutes the main focus regarding the biomineralization process. In this study, we isolated a new nacre matrix protein in P. margaritifera and P. maxima, we called Pmarg- and Pmax-MRNP34 (methionine-rich nacre protein). MRNP34 is a secreted hydrophobic protein, which is remarkably rich in methionine, and which is specifically localised in mineralizing the epithelium cells of the mantle and in the nacre matrix. The structure of this protein is drastically different from those of the other nacre proteins already described. This unusual methionine-rich protein is a new member in the growing list of low complexity domain containing proteins that are associated with biocalcifications. These observations offer new insights to the molecular mechanisms of biomineralization.

10.1007/s00726-011-0932-0https://archimer.ifremer.fr/doc/00077/18870/