Search results for "Nacre"
showing 10 items of 10 documents
Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters
2012
9 pages; International audience; Nacre of the Pinctada pearl oyster shells is composed of 98% CaCO(3) and 2% organic matrix. The relationship between the organic matrix and the mechanism of nacre formation currently constitutes the main focus regarding the biomineralization process. In this study, we isolated a new nacre matrix protein in P. margaritifera and P. maxima, we called Pmarg- and Pmax-MRNP34 (methionine-rich nacre protein). MRNP34 is a secreted hydrophobic protein, which is remarkably rich in methionine, and which is specifically localised in mineralizing the epithelium cells of the mantle and in the nacre matrix. The structure of this protein is drastically different from those …
Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa.
2016
The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell-forming tissue, the mantle. This so-called ‘calcifying matrix’ is a complex mixture of proteins, glycoproteins and polysaccharides that is assembled and occluded within the mineral phase during the calcification process. Better molecular-level characterization of the substances that regulate nacre formation is still required. Notable advances in expressed tag sequencing of freshwater mussels, such as Elliptio complanata and Villosa lienosa , provide a pre-requisite to further characterize bivalve nacre proteins by a proteomic approach. In this…
Evolution des biominéralisations nacrées chez les mollusques : caractérisation moléculaire des matrices coquillières du céphalopode nautiloïde Nautil…
2008
In metazoan, molluscan shells are one of the most fascinating examples for the investigation of the calcium carbonate biomineralization phenomenon. These exoskeletons are secreted by the outer epithelium of the calcifying mantle. They are composed of 95% of mineral – calcite and/or aragonite -, the rest of the shells being constituted by a mixture of proteins, glycoproteins and polysaccharides, called the organic matrix. This calcifying matrix is directly involved in biomineralization. This PhD work is focussed on the characterization of organic components associated to the nacreous layer. In molluscs, the nacre is observed in shells of extent species of bivalves, gastropods, cephalopods an…
Ultrastructure of the Interlamellar Membranes of the Nacre of the Bivalve Pteria hirundo, Determined by Immunolabelling.
2015
The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the …
Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells
2015
Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano-, and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism-nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregu…
'Palaeoshellomics' reveals the use of freshwater mother-of-pearl in prehistory
2019
The extensive use of mollusc shell as a versatile raw material is testament to its importance in prehistoric times. The consistent choice of certain species for different purposes, including the making of ornaments, is a direct representation of how humans viewed and exploited their environment. The necessary taxonomic information, however, is often impossible to obtain from objects that are small, heavily worked or degraded. Here we propose a novel biogeochemical approach to track the biological origin of prehistoric mollusc shell. We conducted an in-depth study of archaeological ornaments using microstructural, geochemical and biomolecular analyses, including ‘palaeoshellomics’, the first…
Nacre calcification in the freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein.
2008
9 pages; International audience; The formation of the molluscan shell is finely tuned by macromolecules of the shell organic matrix. Previous results have shown that the acid-soluble fraction of the nacre matrix of the freshwater paleoheterodont bivalve Unio pictorum shell displays a number of remarkable properties, such as calcium-binding activity, the presence of extensive glycosylations and the capacity to interfere at low concentration with in vitro calcium carbonate precipitation. Here we have found that the nacre-soluble matrix exhibits a carbonic anhydrase activity, an important function in calcification processes. This matrix is composed of three main proteinaceous discrete fraction…
'Shellome': Proteins involved in mollusk shell biomineralization - diversity, functions.
2011
18 pages; International audience
The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). Involvement of acidic polysaccharides from glycoproteins in na…
2007
13 pages; International audience; Among molluscs, the shell biomineralization process is controlled by a set of extracellular macromolecular components secreted by the calcifying mantle. In spite of several studies, these components are mainly known in bivalves from only few members of pteriomorph groups. In the present case, we investigated the biochemical properties of the aragonitic shell of the freshwater bivalve Unio pictorum (Paleoheterodonta, Unionoida). Analysis of the amino acid composition reveals a high amount of glycine, aspartate and alanine in the acid-soluble extract, whereas the acid-insoluble one is rich in alanine and glycine. Monosaccharidic analysis indicates that the in…
Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus.
2009
12 pages; International audience; In mollusks, one of the most widely studied shell textures is nacre, the lustrous aragonitic layer that constitutes the internal components of the shells of several bivalves, a few gastropods, and one cephalopod: the nautilus. Nacre contains a minor organic fraction, which displays a wide range of functions in relation to the biomineralization process. Here, we have biochemically characterized the nacre matrix of the cephalopod Nautilus macromphalus. The acid-soluble matrix contains a mixture of polydisperse and discrete proteins and glycoproteins, which interact with the formation of calcite crystals. In addition, a few bind calcium ions. Furthermore, we h…