6533b834fe1ef96bd129e113
RESEARCH PRODUCT
Nacre calcification in the freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein.
Frédéric MarinDavorin MedakovicBenjamin MarieNathalie GuichardLaurent BédouetChristian MiletGilles Luquetsubject
ProteomicsCarbonateschemistry.chemical_elementFresh WaterCalciumBiochemistryMass Spectrometry03 medical and health scienceschemistry.chemical_compoundCalcification PhysiologicCalcium-binding proteinCarbonic anhydraseMollusc shellmedicineAnimalsGlycosyl[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid Sequence[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyCarbonic AnhydrasesGlycoproteins030304 developmental biologychemistry.chemical_classificationbiomineralization; mollusc shell nacre; carbonic anhydrase; 2-DE; two-dimensional electrophoresis; organic matrix0303 health sciencesbiologyCalcium-Binding Proteins030302 biochemistry & molecular biologyOrganic ChemistryUnio pictorumbiology.organism_classificationTrypsin[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsBivalviaEnzyme ActivationMolecular WeightSolubilitychemistryBiochemistryMicroscopy Electron Scanningbiology.proteinMolecular MedicineCalciumGlycoproteinGelsSequence Analysismedicine.drugdescription
9 pages; International audience; The formation of the molluscan shell is finely tuned by macromolecules of the shell organic matrix. Previous results have shown that the acid-soluble fraction of the nacre matrix of the freshwater paleoheterodont bivalve Unio pictorum shell displays a number of remarkable properties, such as calcium-binding activity, the presence of extensive glycosylations and the capacity to interfere at low concentration with in vitro calcium carbonate precipitation. Here we have found that the nacre-soluble matrix exhibits a carbonic anhydrase activity, an important function in calcification processes. This matrix is composed of three main proteinaceous discrete fractions. The one with the highest apparent molecular weight is a 95 kDa glycoprotein that is specific to the nacreous layer. P95, as it is provisionally named, is enriched in Gly, Glx and Asx and exhibits an apparent pI value of approximately 4, or approximately 7 when chemically deglycosylated. Furthermore, its glycosyl moiety, consisting of sulfated polysaccharides, is involved in calcium binding. Purified fractions of the three main proteins were digested with trypsin, and the resulting peptides were analysed by mass spectrometry. Our results suggest that identical peptides are constitutive domains of the different proteins. Partial primary structures were obtained by de novo sequencing and compared with known sequences from other mollusc shell proteins. Our results are discussed from an evolutionary viewpoint.
year | journal | country | edition | language |
---|---|---|---|---|
2008-09-22 |