0000000000129261
AUTHOR
Isabelle Zanella-cléon
Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters
9 pages; International audience; Nacre of the Pinctada pearl oyster shells is composed of 98% CaCO(3) and 2% organic matrix. The relationship between the organic matrix and the mechanism of nacre formation currently constitutes the main focus regarding the biomineralization process. In this study, we isolated a new nacre matrix protein in P. margaritifera and P. maxima, we called Pmarg- and Pmax-MRNP34 (methionine-rich nacre protein). MRNP34 is a secreted hydrophobic protein, which is remarkably rich in methionine, and which is specifically localised in mineralizing the epithelium cells of the mantle and in the nacre matrix. The structure of this protein is drastically different from those …
The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling.
14 pages; International audience; In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins-the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The or…
The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties
19 pages; International audience; Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3) deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we p…
Pmarg-pearlin is a matrix protein involved in nacre framework formation in the pearl oyster Pinctada margaritifera.
11 pages; International audience; The shell of pearl oysters is organized in multiple layers of CaCO(3) crystallites packed together in an organic matrix. Relationships between the components of the organic matrix and mechanisms of nacre formation currently constitute the main focus of research into biomineralization. In this study, we characterized the pearlin protein from the oyster Pinctada margaritifera (Pmarg); this shares structural features with other members of a matrix protein family, N14/N16/pearlin. Pmarg pearlin exhibits calcium- and chitin-binding properties. Pmarg pearlin transcripts are distinctively localized in the mineralizing tissue responsible for nacre formation. More s…
Additional file 1 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file 1:Table S1: Summary of BlastX results of biomineralization-related protein in the EST P. margaritifera mantle database. A catalogue of 82 P. margaritifera mantle transcripts potentially implicated in the biomineralization process was constructed using BlastX (E-value < 10-3) with selected protein sequences identified from mollusks (bivalvia and gastropoda). (DOC 140 KB)
Nacre evolution: a proteomic approach.
AbstractFrom an evolutionary viewpoint, the molluscan nacre constitutes a fascinating object. This microstructure appeared early, in the Lower Cambrian period, about 530 million years ago, and since then, has been kept unchanged until today. Nacre is restricted to the conchiferan mollusks, where it occurs in t least three main classes, bivalves, gastropods and cephalopods. The aim of the present study is to investigate whether all nacres are built from the same “macromolecular tools”, proteins of the nacre matrix. To this end, we studied three new nacre models, the freshwater bivalve Unio pictorum, the cephalopod Nautilus macromphalus, and the gastropod Haliotis asinina, to which we applied…
Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus
In molluscs, and more generally in metazoan organisms, the production of a calcified skeleton is a complex molecular process that is regulated by the secretion of an extracellular organic matrix. This matrix constitutes a cohesive and functional macromolecular assemblage, containing mainly proteins, glycoproteins and polysaccharides that, together, control the biomineral formation. These macromolecules interact with the extruded precursor mineral ions, mainly calcium and bicarbonate, to form complex organo-mineral composites of well-defined microstructures. For several reasons related to its remarkable mechanical properties and to its high value in jewelry, nacre is by far the most studied …
A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus.
12 pages; International audience; The sea urchin endoskeleton consists of a magnesium-rich biocalcite comprising a small amount of occluded organic macromolecules. This structure constitutes a key-model for understanding the mineral - organics interplay, and for conceiving in vitro bio-inspired materials with tailored properties. Here we employed a deep-clean technique to purify the occluded proteins from adult Paracentrotus lividus tests. We characterized them by 1- and 2D-electrophoreses, ELISA and immunoblotting, and using liquid chromatography coupled with Mass Spectrometry (nanoLC-MS/MS), we identified two metalloenzymes (carbonic anhydrase and MMP), a set of MSP130 family members, sev…
Proteomic analysis of Parietaria judaica pollen and allergen profiling by an immunoproteomic approach
Parietaria judaica pollen is a common cause of airway allergic disease in the Mediterranean area. Proteome analysis of mature Parietaria judaica pollen by two-dimensional gel electrophoresis (2-DE) and mass spectrometry has established the first reference proteome map of this weed. Proteins involved in a variety of cellular functions as well as the occurrence of allergens were detected. By using 2-DE and immunoblotting with sera from Parietaria judaica allergic patients we obtained a more detailed characterization of Parietaria judaica allergen profile so to improve our comprehension of the pathogenesis of pollen-induced allergic reaction.
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Identification of Two Carbonic Anhydrases in the Mantle of the European Abalone Haliotis tuberculata (Gastropoda, Haliotidae): Phylogenetic Implications
Carbonic anhydrases (CAs) represent a diversified family of metalloenzymes that reversibly catalyze the hydration of carbon dioxide. They are involved in a wide range of functions, among which is the formation of CaCO(3) skeletons in metazoans. In the shell-forming mantle tissues of mollusks, the location of the CA catalytic activity is elusive and gives birth to contradicting views. In the present paper, using the European abalone Haliotis tuberculata, a key model gastropod in biomineralization studies, we identified and characterized two CAs (htCA1 and htCA2) that are specific of the shell-forming mantle tissue. We analyzed them in a phylogenetic context. Combining various approaches, inc…
Additional file 3 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Authors’ original file for figure 2
Proteomic analysis of the acid-soluble nacre matrix of the bivalve Unio pictorum: detection of novel carbonic anhydrase and putative protease inhibitor proteins.
10 pages; International audience; The matrix extracted from mollusc shell nacre is a mixture of proteins and glycoproteins that is thought to play a major role in controlling biomineral synthesis and in increasing its mechanical properties. We investigated the nacreous shell of the freshwater mussel Unio pictorum, to which we applied a proteomics approach adapted to mollusc shell proteins. On one hand, the acid-soluble nacre matrix was fractionated by SDS-PAGE and the five main protein bands (P95, P50, P29, P16, and P12) were digested with trypsin and analyzed by nanoLC-MS/MS followed by de novo sequencing. On the other hand, the acid-soluble nacre matrix was analyzed in a similar manner, w…
The shell matrix of the pulmonate land snail Helix aspersa maxima.
12 pages; International audience; In mollusks, the shell mineralization process is controlled by an array of proteins, glycoproteins and polysaccharides that collectively constitute the shell matrix. In spite of numerous researches, the shell protein content of a limited number of model species has been investigated. This paper presents biochemical data on the common edible land snail Helix aspersa maxima, a model organism for ecotoxicological purposes, which has however been poorly investigated from a biomineralization viewpoint. The shell matrix of this species was extracted and analyzed biochemically for functional in vitro inhibition assay, for amino acid and monosaccharides composition…
Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Abstract Background The shell of the pearl-producing bivalve Pinctada margaritifera is composed of an organic cell-free matrix that plays a key role in the dynamic process of biologically-controlled biomineralization. In order to increase genomic resources and identify shell matrix proteins implicated in biomineralization in P. margaritifera, high-throughput Expressed Sequence Tag (EST) pyrosequencing was undertaken on the calcifying mantle, combined with a proteomic analysis of the shell. Results We report the functional analysis of 276 738 sequences, leading to the constitution of an unprecedented catalog of 82 P. margaritifera biomineralization-related mantle protein sequences. Component…
Comparative Proteome Profiling and Functional Analysis of Chronic Myelogenous Leukemia Cell Lines
The aim of the present study was the molecular profiling of different Ph+ chronic myelogenous leukemia (CML) cell lines (LAMA84, K562, and KCL22) by a proteomic approach. By employing two-dimensional gel electrophoresis combined with mass spectrometry analysis, we have identified 191 protein spots corresponding to 142 different proteins. Among these, 63% were cancer-related proteins and 74% were described for the first time in leukemia cells. Multivariate analysis highlighted significant differences in the global proteomic profile of the three CML cell lines. In particular, the detailed analysis of 35 differentially expressed proteins revealed that LAMA84 cells preferentially expressed prot…
Novel molluskan biomineralization proteins retrieved from proteomics: a case study with upsalin.
12 pages; International audience; The formation of the molluskan shell is regulated by an array of extracellular proteins secreted by the calcifying epithelial cells of the mantle. These proteins remain occluded within the recently formed biominerals. To date, many shell proteins have been retrieved, but only a few of them, such as nacreins, have clearly identified functions. In this particular case, by combining molecular biology and biochemical approaches, we performed the molecular characterization of a novel protein that we named Upsalin, associated with the nacreous shell of the freshwater mussel Unio pictorum. The full sequence of the upsalin transcript was obtained by RT-PCR and 5'/3…
Characterization of crustacyanin-A2 subunit as a component of the organic matrix of gastroliths from the crayfish Cherax quadricarinatus.
AbstractLike the lobsters, some terrestrial crabs and other crayfishes, the Australian red claw crayfish, Cherax quadricarinatus, elaborates in its stomach wall calcium storage structures called gastroliths. For understanding the cyclic elaboration and stabilization of these amorphous calcified structures, we studied the organic matrix (OM) of these paired biomineralizations. After decalcification with acetic acid, we analysed the proteinaceous components of an acetic acid-insoluble fraction by two-dimensional electrophoresis. Nine spots were digested by trpsin and the tryptic peptides were sequenced by nanoLC-nanoESI-MS/MS mass spectrometry. About 100 peptidic sequences were compared to se…
Additional file 5 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Authors’ original file for figure 4
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file 4 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Authors’ original file for figure 3
Additional file 2 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Authors’ original file for figure 1
Additional file 5 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Authors’ original file for figure 4
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file 4 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Authors’ original file for figure 3
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Additional file 2 of Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization
Authors’ original file for figure 1