Search results for " GEOMETRIA"
showing 10 items of 291 documents
Multiple solutions for parametric double phase Dirichlet problems
2020
We consider a parametric double phase Dirichlet problem. Using variational tools together with suitable truncation and comparison techniques, we show that for all parametric values [Formula: see text] the problem has at least three nontrivial solutions, two of which have constant sign. Also, we identify the critical parameter [Formula: see text] precisely in terms of the spectrum of the [Formula: see text]-Laplacian.
From fuzzy metric spaces to modular metric spaces: a fixed point approach
2017
We propose an intuitive theorem which uses some concepts of auxiliary functions for establishing existence and uniqueness of the fixed point of a self-mapping. First we work in the setting of fuzzy metric spaces in the sense of George and Veeramani, then we deduce some consequences in modular metric spaces. Finally, a sample homotopy result is derived making use of the main theorem.
On the additivity of block designs
2016
We show that symmetric block designs $${\mathcal {D}}=({\mathcal {P}},{\mathcal {B}})$$D=(P,B) can be embedded in a suitable commutative group $${\mathfrak {G}}_{\mathcal {D}}$$GD in such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this property are the point-line designs of $${\mathrm {PG}}(d,2)$$PG(d,2) and $${\mathrm {AG}}(d,3)$$AG(d,3). In both cases, the blocks can be characterized as the only k-subsets of $$\mathcal {P}$$P whose elements sum to zero. It follows that the group of automorphisms of any such design $$\mathcal {D}$$D is the group of automorphisms of $${\mathfrak {G}}_\mathcal {D}$$GD that leave $$\mathcal {P}$$P in…
Approximate fixed points of set-valued mapping in b-metric space
2016
We establish existence results related to approximate fixed point property of special types of set-valued contraction mappings, in the setting of b-metric spaces. As consequences of the main theorem, we give some fixed point results which generalize and extend various fixed point theorems in the existing literature. A simple example illustrates the new theory. Finally, we apply our results to establishing the existence of solution for some differential and integral problems.
On the subset sum problem for finite fields
2021
Abstract Let G be the additive group of a finite field. J. Li and D. Wan determined the exact number of solutions of the subset sum problem over G, by giving an explicit formula for the number of subsets of G of prescribed size whose elements sum up to a given element of G. They also determined a closed-form expression for the case where the subsets are required to contain only nonzero elements. In this paper we give an alternative proof of the two formulas. Our argument is purely combinatorial, as in the original proof by Li and Wan, but follows a different and somehow more “natural” approach. We also indicate some new connections with coding theory and combinatorial designs.
On the weight distribution of perfect binary codes
2021
In this paper, we give a new proof of the closed-form formula for the weight distribution of a perfect binary single-error-correcting code.
New lower bounds for the minimum distance of generalized algebraic geometry codes
2013
Abstract In this paper, we give a new lower bound for generalized algebraic geometry codes with which we are able to construct some new linear codes having better parameters compared with the ones known in the literature. Moreover, we give a relationship between a family of generalized algebraic geometry codes and algebraic geometry codes. Finally, we propose a decoding algorithm for such a family.
On the classification of algebraic function fields of class number three
2012
AbstractLet F be an algebraic function field of one variable having a finite field Fq with q>2 elements as its field of constants. We determine all such fields for which the class number is three. More precisely, we show that, up to Fq-isomorphism, there are only 8 of such function fields. For q=2 the problem has been solved under the additional hypothesis that the function field is quadratic.
On 2-(n^2,2n,2n-1) designs with three intersection numbers
2007
The simple incidence structure $${\mathcal{D}(\mathcal{A},2)}$$ , formed by the points and the unordered pairs of distinct parallel lines of a finite affine plane $${\mathcal{A}=(\mathcal{P}, \mathcal{L})}$$ of order n > 4, is a 2 --- (n 2,2n,2n---1) design with intersection numbers 0,4,n. In this paper, we show that the converse is true, when n ? 5 is an odd integer.
On the cardinality of almost discretely Lindelof spaces
2016
A space is said to be almost discretely Lindelof if every discrete subset can be covered by a Lindelof subspace. Juhasz et al. (Weakly linearly Lindelof monotonically normal spaces are Lindelof, preprint, arXiv:1610.04506 ) asked whether every almost discretely Lindelof first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under $$2^{<{\mathfrak {c}}}={\mathfrak {c}}$$ (which is a consequence of Martin’s Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhasz et al. (First-countable and almost discretely Lindelof $$T_3$$ spaces have cardinality at most continuum, preprint, arXiv:1612.06651 ). We conclude with a few rel…