Search results for " Gene Expression"

showing 10 items of 695 documents

Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes

2019

Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylati…

0301 basic medicineCancer ResearchSaccharomyces cerevisiae Proteinschip-on-chipSaccharomyces cerevisiaeEpigenesis GeneticHistones03 medical and health sciencesHistone H30302 clinical medicineOsmotic PressureGene Expression Regulation FungalGene expressionEpigeneticsHistone H3 acetylationMolecular BiologyHistone AcetyltransferasesRegulation of gene expressionMediator ComplexbiologyepigeneticsAcetylationCell biologyChromatinDNA-Binding ProteinsHistone Code030104 developmental biologyHistoneHistone acetylationAcetylation030220 oncology & carcinogenesisbiology.proteinchromatinhog1osmotic stressMitogen-Activated Protein Kinasesgene regulationProtein Processing Post-TranslationalTranscription FactorsResearch Paper
researchProduct

Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells

2017

Abstract Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ…

0301 basic medicineCancer ResearchTime FactorsCOPZ1ApoptosisCOPZ1Thyroid cancerThyroid NeoplasmThyroidRNAi TherapeuticCell death; COPZ1; Non-oncogene addiction; Thyroid carcinoma; Animals; Apoptosis; Autophagy; Cell Line Tumor; Cell Survival; Coatomer Protein; Endoplasmic Reticulum Stress; Female; Gene Expression Regulation Neoplastic; Humans; Mice Nude; RNA Interference; Signal Transduction; Thyroid Neoplasms; Time Factors; Transfection; Tumor Burden; Unfolded Protein Response; Xenograft Model Antitumor Assays; RNAi Therapeutics; Oncology; Cancer ResearchEndoplasmic Reticulum StressOncogene AddictionTumor BurdenGene Expression Regulation Neoplasticmedicine.anatomical_structureOncologyFemaleRNA InterferenceNon-oncogene addictionHumanSignal TransductionCell deathProgrammed cell deathXenograft Model Antitumor AssayTime FactorCell SurvivalMice NudeBiologyTransfectionCoatomer ProteinThyroid carcinomaThyroid carcinoma03 medical and health sciencesCell Line TumorAutophagymedicineAnimalsHumansThyroid NeoplasmsEndoplasmic Reticulum StreAnimalAutophagyApoptosimedicine.diseaseXenograft Model Antitumor AssaysRNAi Therapeutics030104 developmental biologyImmunologyUnfolded Protein ResponseCancer researchUnfolded protein response
researchProduct

Cadmium-Associated Molecular Signatures in Cancer Cell Models

2021

Simple Summary The exposure of cancer cells to cadmium compounds may be associated with the acceleration of tumor progression. It is known that cadmium is a transcriptional regulator, and the study of differentially expressed genes has enabled the identification and classification of cadmium-associated molecular signatures as useful biomarkers that are potentially transferable to clinical research. This review recapitulates the studies that report the detection of such signatures in breast, gastric, colon, liver, lung, and nasopharyngeal tumor cell models, as specifically demonstrated by individual gene or whole genome expression profiling. Abstract The exposure of cancer cells to cadmium a…

0301 basic medicineCancer Researchcadmiumnasopharyngeal cancerReviewBiologygene signaturedifferential expressionliver cancer03 medical and health sciences0302 clinical medicinebreast cancerGene silencingSettore BIO/06 - Anatomia Comparata E CitologiaRC254-282Regulation of gene expressiongastric cancerNeoplasms. Tumors. Oncology. Including cancer and carcinogensGene signaturein vitro cell modelsPhenotypein vitro cell modelGene expression profilinglung cancer030104 developmental biologyOncologycolon cancerTumor progression030220 oncology & carcinogenesisCancer cellCancer researchReprogrammingCancers
researchProduct

Pattern of Invasion in Human Pancreatic Cancer Organoids Is Associated with Loss of SMAD4 and Clinical Outcome

2020

Abstract Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by extensive local invasion and systemic spread. In this study, we employed a three-dimensional organoid model of human pancreatic cancer to characterize the molecular alterations critical for invasion. Time-lapse microscopy was used to observe invasion in organoids from 25 surgically resected human PDAC samples in collagen I. Subsequent lentiviral modification and small-molecule inhibitors were used to investigate the molecular programs underlying invasion in PDAC organoids. When cultured in collagen I, PDAC organoids exhibited two distinct, morphologically defined invasive phenotypes, mesenchymal an…

0301 basic medicineCancer Researchendocrine system diseasesPancreatic ductal adenocarcinoma (PDAC)RAC1CDC42AdenocarcinomaBiologyArticle03 medical and health sciences0302 clinical medicineHuman Pancreatic CancerCell MovementPancreatic cancerBiomarkers TumorTumor Cells CulturedmedicineOrganoidHumansNeoplasm InvasivenessCell ProliferationSmad4 ProteinRegulation of gene expressionCell growthMesenchymal stem cellPrognosismedicine.diseasePhenotypedigestive system diseasesGene Expression Regulation NeoplasticOrganoidsPancreatic NeoplasmsSurvival Rate030104 developmental biologyOncology030220 oncology & carcinogenesisembryonic structuresCancer researchCarcinoma Pancreatic DuctalSignal TransductionCancer Research
researchProduct

Preparing for Winter: The Transcriptomic Response Associated with Different Day Lengths in Drosophila montana

2016

The work has been supported by a Natural Environment Research Council studentship to D.J.P. and an Academy of Finland grant to M.K. (project 268214). At northern latitudes, the most robust cue for assessing the onset of winter is the shortening of day lengths. Many species use day length as a cue to increase their cold tolerance and/or enter into diapause, but little is known about changes in gene expression that occur under different day lengths. We investigate the gene expression changes associated with differences in light/dark cycles in Drosophila montana, a northerly distributed species with a strong adult photoperiodic reproductive diapause. To examine gene expression changes induced …

0301 basic medicineCandidate geneQH301 Biologymedia_common.quotation_subjectZoologyQH426 GeneticsInvestigationsDiapauseBiologyQH426-470photoperiodQH30103 medical and health sciencestranscriptomicsBotanyGeneticsAnimalsCluster Analysisgeeniekspressioskin and connective tissue diseasesQH426Molecular BiologyDrosophilaGenetics (clinical)Overwinteringmedia_commonRegulation of gene expressionphotoperiodismGene Expression Profilingta1184Chromosome MappingComputational BiologyMolecular Sequence Annotationbiology.organism_classificationoverwinteringGene expression profilingdiapauseGene Ontology030104 developmental biologyGene Expression Regulationgene expressionta1181DrosophilaFemaleSeasonsGene expressionsense organsReproductionTranscriptome
researchProduct

c-Fos induces chondrogenic tumor formation in immortalized human mesenchymal progenitor cells

2018

Mesenchymal progenitor cells (MPCs) have been hypothesized as cells of origin for sarcomas, and c-Fos transcription factor has been showed to act as an oncogene in bone tumors. In this study, we show c-Fos is present in most sarcomas with chondral phenotype, while multiple other genes are related to c-Fos expression pattern. To further define the role of c-Fos in sarcomagenesis, we expressed it in primary human MPCs (hMPCs), immortalized hMPCs and transformed murine MPCs (mMPCs). In immortalized hMPCs, c-Fos expression generated morphological changes, reduced mobility capacity and impaired adipogenic- and osteogenic-differentiation potentials. Remarkably, immortalized hMPCs or mMPCs express…

0301 basic medicineCarcinogenesisCelllcsh:MedicineMice SCIDArticleCell Line03 medical and health sciencesMice0302 clinical medicineMice Inbred NODmedicineAnimalsHumansProgenitor celllcsh:ScienceRegulation of gene expressionMultidisciplinaryOncogeneChemistryMesenchymal stem celllcsh:RGenes fosMesenchymal Stem CellsSarcomaChondrogenesisPhenotypeCell biologyGene Expression Regulation Neoplastic030104 developmental biologymedicine.anatomical_structureCell Transformation NeoplasticCell culture030220 oncology & carcinogenesislcsh:QProto-Oncogene Proteins c-fos
researchProduct

MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state

2018

Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermo…

0301 basic medicineCarcinogenesisScienceGeneral Physics and AstronomyBreast NeoplasmsMice SCIDTumor initiationBiologyBreast cancer MYC Tumorigenesismedicine.disease_causeArticleGeneral Biochemistry Genetics and Molecular BiologyEpigenesis GeneticProto-Oncogene Proteins c-mycMice03 medical and health sciencesCell Line TumormedicineAnimalsHumansEpigeneticslcsh:ScienceEnhancerTranscription factorRegulation of gene expressionMultidisciplinaryQGeneral ChemistryCellular ReprogrammingCell biologyGene Expression Regulation NeoplasticEnhancer Elements Genetic030104 developmental biologyNeoplastic Stem CellsFemalelcsh:QStem cellCarcinogenesisReprogramming
researchProduct

Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development.

2016

AbstractRecent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underly…

0301 basic medicineCardiac function curveFish ProteinsVDP::Mathematics and natural scienses: 400::Zoology and botany: 480::Marine biology: 497:Matematikk og naturvitenskap: 400::Kjemi: 440::Miljøkjemi naturmiljøkjemi: 446 [VDP]MorphogenesisIntracellular Space010501 environmental sciencesBiology:Mathematics and natural scienses: 400::Zoology and botany: 480::Marine biology: 497 [VDP]01 natural sciencesCalcium in biologyIon ChannelsArticleMyoblasts03 medical and health sciencesMorphogenesisVDP::Mathematics and natural scienses: 400::Chemistry: 440::Environmental chemistry natural environmental chemistry: 446AnimalsPetroleum PollutionCraniofacialPolycyclic Aromatic HydrocarbonsIon channel:Mathematics and natural scienses: 400::Chemistry: 440::Environmental chemistry natural environmental chemistry: 446 [VDP]Cells Cultured0105 earth and related environmental sciences:Matematikk og naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497 [VDP]Calcium metabolismRegulation of gene expressionLife Cycle StagesMultidisciplinarySkullFishesGene Expression Regulation DevelopmentalHeartAnatomyEnvironmental ExposureCell biology030104 developmental biologyPetroleumVDP::Matematikk og naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497VDP::Matematikk og naturvitenskap: 400::Kjemi: 440::Miljøkjemi naturmiljøkjemi: 446CalciumIntracellularScientific reports
researchProduct

EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance.

2016

Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible facto…

0301 basic medicineCell signalingScienceGeneral Physics and AstronomyRepressorDown-RegulationAngiogenesis InhibitorsEphrin-B2BiologyGeneral Biochemistry Genetics and Molecular BiologyArticleNeovascularization03 medical and health sciencesDownregulation and upregulationddc:570GliomamedicineGene silencingAnimalsHumansNeoplasm InvasivenessPsychological repressionZinc Finger E-box Binding Homeobox 2Regulation of gene expressionMice KnockoutMultidisciplinaryNeovascularization PathologicQGeneral ChemistryGliomamedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitXenograft Model Antitumor AssaysCell HypoxiaCell biologyUp-RegulationBevacizumabGene Expression Regulation NeoplasticMice Inbred C57BL030104 developmental biologyDrug Resistance Neoplasmmedicine.symptomNature communications
researchProduct

Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells

2018

In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD-MSCs) to characterize and differentiate them into endothelial-like cells. AD-MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony-forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM-2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial-like…

0301 basic medicineCellular differentiationSettore VET/09 - Clinica Chirurgica VeterinariaSettore BIO/13 - Biologia Applicataimmunophenotypical analysiCell DifferentiationNanog Homeobox ProteinGeneral MedicineCadherinsFlow CytometryUp-RegulationPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellDrug CombinationsAdipose Tissueembryonic structuresVeterinary (all)ProteoglycansCollagenStem cellHomeobox protein NANOGadipose-derived mesenchymal stem cellDown-RegulationCD146 AntigenBiology03 medical and health sciencesMatrigel assaySOX2Antigens CDAdipose-derived mesenchymal stem cellsAnimalsEndothelial cells differentiationRats WistarImmunophenotypical analysisMatrigelGeneral VeterinaryGene Expression ProfilingSOXB1 Transcription FactorsMesenchymal stem cellEndothelial CellsMesenchymal Stem Cells3T3-L1Molecular biologyAdipose-derived mesenchymal stem cells; Endothelial cells differentiation; Gene expression; Immunophenotypical analysis; Matrigel assay; Rat; Veterinary (all)Culture MediaRats030104 developmental biologyadipose-derived mesenchymal stem cells; endothelial cells differentiation; gene expression; immunophenotypical analysis; matrigel assay; ratLeukocyte Common AntigensThy-1 AntigensRatLamininGene expressionOctamer Transcription Factor-3
researchProduct