Search results for " Gene Expression"

showing 10 items of 695 documents

Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome

2014

Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1–HSF2 heterocomplexes. This perturbs the in vivo bindi…

[SDV]Life Sciences [q-bio][SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMice0302 clinical medicineradial neuronal migrationHeat Shock Transcription FactorsHSF1[SDV.BDD]Life Sciences [q-bio]/Development BiologyResearch ArticlesHeat-Shock ProteinsComputingMilieux_MISCELLANEOUSRegulation of gene expressionCerebral CortexMice Knockout0303 health sciences[SDV.BDD.EO] Life Sciences [q-bio]/Development Biology/Embryology and OrganogenesisCell biologyheat shock factorsDNA-Binding Proteins[SDV.TOX] Life Sciences [q-bio]/Toxicologymedicine.anatomical_structureCerebral cortexFetal Alcohol Spectrum Disorders[SDV.TOX]Life Sciences [q-bio]/Toxicology[ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMolecular MedicinetranscriptionProtein BindingDoublecortin ProteinFetal alcohol syndromeBiology03 medical and health sciencesMediatorStress PhysiologicalHeat shock protein[SDV.BDD] Life Sciences [q-bio]/Development BiologymedicineAnimals[ SDV.BDD ] Life Sciences [q-bio]/Development Biologymicrotubule‐associated proteinsTranscription factor030304 developmental biologymicrotubule-associated proteins[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiologymedicine.diseaseHeat shock factorDisease Models Animal[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and OrganogenesisGene Expression RegulationImmunologyfetal alcohol syndrome030217 neurology & neurosurgeryMalformations of Cortical Development Group IITranscription FactorsNeuroscience
researchProduct

Distinct 5' SCL enhancers direct transcription to developing brain, spinal cord, and endothelium: neural expression is mediated by GATA factor bindin…

1999

The SCL gene encodes a basic helix-loop-helix transcription factor with a pivotal role in the development of endothelium and of all hematopoietic lineages. SCL is also expressed in the central nervous system, although its expression pattern has not been examined in detail and its function in neural development is unknown. In this article we present the first analysis of SCL transcriptional regulation in vivo. We have identified three spatially distinct regulatory modules, each of which was both necessary and sufficient to direct reporter gene expression in vivo to three different regions within the normal SCL expression domain, namely, developing endothelium, midbrain, and hindbrain/spinal …

animal structuresEmbryo NonmammalianTranscription GeneticHindbrainMice TransgenicChick EmbryoBiologybehavioral disciplines and activities03 medical and health sciencesMice0302 clinical medicineTranscription (biology)Genes Reporterhemic and lymphatic diseasesProto-Oncogene ProteinsBasic Helix-Loop-Helix Transcription FactorsAnimalsTissue DistributionEndotheliumEnhancerMolecular BiologyTranscription factorGeneIn Situ HybridizationT-Cell Acute Lymphocytic Leukemia Protein 1Zebrafish030304 developmental biologyRegulation of gene expressionGenetics0303 health sciencesReporter geneModels GeneticfungiBrainCell BiologyZebrafish ProteinsEmbryo MammalianCell biologyDNA-Binding ProteinsLac OperonSpinal CordNeural development030217 neurology & neurosurgeryDevelopmental BiologyTranscription FactorsDevelopmental biology
researchProduct

The increase in maternal expression of axin1 and axin2 contribute to the zebrafish mutant ichabod ventralized phenotype.

2014

β-Catenin is a central effector of the Wnt pathway and one of the players in Ca(+)-dependent cell-cell adhesion. While many wnts are present and expressed in vertebrates, only one β-catenin exists in the majority of the organisms. One intriguing exception is zebrafish that carries two genes for β-catenin. The maternal recessive mutation ichabod presents very low levels of β-catenin2 that in turn affects dorsal axis formation, suggesting that β-catenin1 is incapable to compensate for β-catenin2 loss and raising the question of whether these two β-catenins may have differential roles during early axis specification. Here we identify a specific antibody that can discriminate selectively for β-…

axin1axin2zebrafish mutant ichabodMessengerEmbryonic DevelopmentBiochemistryBETA-CATENINAxin2-RGS DOMAINAxin ProteinAntibody SpecificitySettore BIO/10 - BiochimicaAnimalsAxin2-RGS DOMAIN; AXIS FORMATION; BETA-CATENIN; Wnt signaling; ZEBRAFISH; Animals; Antibody Specificity; Axin Protein; Blastula; Cell Nucleus; Embryonic Development; Female; Gene Expression Regulation Developmental; Genes Dominant; Immunohistochemistry; Lithium Chloride; Mutation; Phenotype; Protein Stability; Protein Transport; RNA Messenger; Signal Transduction; Up-Regulation; Zebrafish; Zebrafish Proteins; beta Catenin; Biochemistry; Cell Biology; Molecular BiologyDevelopmentalDominantRNA MessengerMolecular BiologyZebrafishbeta CateninGenes DominantAXIS FORMATIONCell NucleusProtein StabilityGene Expression Regulation DevelopmentalCell BiologyBlastulaZebrafish ProteinsWnt signalingImmunohistochemistryUp-RegulationProtein TransportPhenotypeGene Expression RegulationGenesMutationRNAFemaleLithium ChlorideSignal Transduction
researchProduct

Antioxidation, Anti-Inflammation, and Regulation of SRD5A Gene Expression of Oryza sativa cv. Bue Bang 3 CMU Husk and Bran Extracts as Androgenetic A…

2022

Acknowledgments: The authors are grateful to the NRCT for supporting research facilities (grant no. NRCT5-RRI63004-P05), Chiang Mai University for the Fundamental Fund 2022, and the partially support grant. We would like to thank Lanna Rice Research Center, Chiang Mai University, and Saleekam Trading Co., Ltd., Thailand, for providing the rice bran and husk samples.

bioactive compoundsEcologyBotanyandrogenetic alopecia; anti-hair loss; anti-inflammation; bioactive compounds; <i>Oryza sativa</i>; 5α-reductase gene expression; rice bran; rice huskfood and beveragesOryza sativaPlant ScienceCuir cabellutanti-inflammationBioactive compounds5α-reductase gene expressionAnti-hair lossRice huskQK1-989Anti-inflammationRice brananti-hair lossandrogenetic alopecia<i>Oryza sativa</i>Androgenetic alopeciaAndrògensEcology Evolution Behavior and Systematics
researchProduct

Proton-irradiated breast cells: molecular points of view

2019

Abstract Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and descri…

breast cancer cDNA microarray gene signature proton therapy radiation Breast Breast Neoplasms Cell Line Tumor DNA Complementary Dose-Response Relationship Radiation Female Gene Expression Profiling Gene Expression Regulation Neoplastic Humans Inflammation MCF-7 Cells Oligonucleotide Array Sequence Analysis Phenotype Proton Therapy Radiation Tolerance Radiotherapy ProtonsDNA ComplementaryHealth Toxicology and Mutagenesismedicine.medical_treatmentBreast NeoplasmsCell fate determinationRadiation Tolerancegene signature03 medical and health sciences0302 clinical medicineBreast cancerbreast cancerCell Line TumorRegular Papermedicineproton therapyHumansRadiology Nuclear Medicine and imagingBreastClonogenic assayBiologyProton therapyOligonucleotide Array Sequence Analysis030304 developmental biologyInflammationcDNA microarray0303 health sciencesRadiotherapyChemistryGene Expression ProfilingBreast cancer; radiation; cDNA microarray; gene signature; proton therapyCancerDose-Response Relationship RadiationGene signaturemedicine.diseaseGene Expression Regulation NeoplasticGene expression profilingRadiation therapyradiationPhenotype030220 oncology & carcinogenesisMCF-7 CellsCancer researchFemaleProtons
researchProduct

Cadmium effect on gene expression by MDA-MB231 breast cancer cells: evidence for down-regulation of AEG-1

2006

cadmium breast cancer gene expressionSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Effect of cadmium and manganese on gene expression and proliferative/invasive ability of tumoral and immortalized epithelial cells form the human bre…

2008

cadmium manganese tumor cells gene expression cell proliferation cell invasionSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mous…

2013

The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was foll…

cancer stem cellsCancer stem cells; Core binding factor acute myeloid leukaemia; Preclinical mouse model; Therapy target validation; Whole transcriptome sequencingMyeloidtherapy target validationOncogene Proteins FusionCloseupsBiologyGranulocyte-Macrophage Progenitor CellsTranslocation Geneticwhole transcriptome sequencingImmunophenotypingMiceGranulocyte-Macrophage Progenitor CellsCancer stem cellhemic and lymphatic diseasesmedicineAML1-ETOAnimalsCell Lineageacute myeloid leukaemiaLymphopoiesisProgenitor cellt(8;21)Research Articlespreclinical mouse modelGeneticsRegulation of gene expressionAntibiotics AntineoplasticSequence Analysis RNAcore binding factor acute myeloid leukaemiainducible mouse-modelHematopoietic Stem CellsMice Inbred C57BLDisease Models AnimalLeukemia Myeloid AcuteHaematopoiesisPhenotypemedicine.anatomical_structureGene Expression RegulationDoxorubicinCancer researchNeoplastic Stem CellsMolecular MedicineStem cell
researchProduct

MicroRNA-29b-1 impairs in vitro cell proliferation, self‑renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells

2014

Osteosarcoma (OS) is the most common type of bone cancer, with a peak incidence in the early childhood. Emerging evidence suggests that treatments targeting cancer stem cells (CSCs) within a tumor can halt cancer and improve patient survival. MicroRNAs (miRNAs) have been implicated in the maintenance of the CSC phenotype, thus, identification of CSC-related miRNAs would provide information for a better understanding of CSCs. Downregulation of miRNA-29 family members (miR-29a/b/c; miR‑29s) was observed in human OS, however, little is known about the functions of miR-29s in human OS CSCs. Previously, during the characterization of 3AB-OS cells, a CSC line selected from human OS MG63 cells, we…

cancer stem cellsHomeobox protein NANOGCancer Research3AB-OS cells; Cancer stem cells; MicroRNA; MicroRNA-29b-1; Multidrug resistance; Osteosarcoma; Bone Neoplasms; Cell Line Tumor; Cell Movement; Cell Proliferation; Drug Resistance Neoplasm; Gene Expression Regulation Neoplastic; Humans; MicroRNAs; Neoplasm Invasiveness; Osteosarcoma; Cancer Research; OncologyDrug ResistanceBone NeoplasmsBiologyCell LineSOX2multidrug resistanceCell MovementCancer stem cellCell Line TumorSettore BIO/10 - BiochimicamicroRNAmedicineHumansNeoplasm InvasivenessClonogenic assaymicroRNA-29b-1Cell ProliferationNeoplasticOsteosarcomaTumormicroRNAOncogeneCancer3AB-OS cellsArticlesCell cyclemedicine.diseaseGene Expression Regulation Neoplasticosteosarcoma cancer stem cells microRNA microRNA-29b-1 multidrug resistance 3AB-OS cellsMicroRNAsGene Expression RegulationOncologyDrug Resistance NeoplasmImmunologyCancer researchNeoplasm
researchProduct

Genetic and Molecular Characterization of The Human Osteosarcoma 3AB-OS Cancer Stem Cell Line: A Possible Model For Studying Osteosarcoma Origin and …

2013

Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second-line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB-OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB-OS cells have hypertriploid karyotype wit…

cancer stem cellsPhysiologyClinical Biochemistrymedicine.disease_causePolymerase Chain ReactionOsteosarcoma cancer stem cellSettore BIO/10 - BiochimicaChromosomes HumanGene Regulatory NetworksCopy-number variationOligonucleotide Array Sequence AnalysisGeneticsComparative Genomic HybridizationOsteosarcomabiologychromosomal aberrationGene Expression Regulation NeoplasticPhenotypemiRNAsNeoplastic Stem CellsOsteosarcomaMitosisBone NeoplasmsHMGA2Cancer stem cellCell Line TumormicroRNABiomarkers Tumorgene expression profilingmedicineHumansOsteosarcoma cancer stem cells; karyotype; chromosomal aberrations; gene expression profiling; miRNAsCell LineageGenetic Predisposition to DiseaseRNA MessengerCell NucleusChromosome AberrationsPloidiesModels GeneticComputational BiologyCancerCell Biologymedicine.diseasekaryotypeMicroRNAsKaryotypingbiology.proteinCancer researchCarcinogenesisComparative genomic hybridization
researchProduct