Search results for " Graphics Processing Unit."
showing 10 items of 17 documents
GSaaS: A Service to Cloudify and Schedule GPUs
2018
Cloud technology is an attractive infrastructure solution that provides customers with an almost unlimited on-demand computational capacity using a pay-per-use approach, and allows data centers to increase their energy and economic savings by adopting a virtualized resource sharing model. However, resources such as graphics processing units (GPUs), have not been fully adapted to this model. Although, general-purpose computing on graphics processing units (GPGPU) is becoming more and more popular, cloud providers lack of flexibility to manage accelerators, because of the extended use of peripheral component interconnect (PCI) passthrough techniques to attach GPUs to virtual machines (VMs). F…
GPU-Based Optimisation of 3D Sensor Placement Considering Redundancy, Range and Field of View
2020
This paper presents a novel and efficient solution for the 3D sensor placement problem based on GPU programming and massive parallelisation. Compared to prior art using gradient-search and mixed-integer based approaches, the method presented in this paper returns optimal or good results in a fraction of the time compared to previous approaches. The presented method allows for redundancy, i.e. requiring selected sub-volumes to be covered by at least n sensors. The presented results are for 3D sensors which have a visible volume represented by cones, but the method can easily be extended to work with sensors having other range and field of view shapes, such as 2D cameras and lidars.
CUSHAW2-GPU: Empowering Faster Gapped Short-Read Alignment Using GPU Computing
2014
We present CUSHAW2-GPU to accelerate the CUSHAW2 algorithm using compute unified device architecture (CUDA)-enabled GPUs. Two critical GPU computing techniques, namely intertask hybrid CPU-GPU parallelism and tile-based Smith-Waterman map backtracking using CUDA, are investigated to facilitate fast alignments. By aligning both simulated and real reads to the human genome, our aligner yields comparable or better performance compared to BWA-SW, Bowtie2, and GEM. Furthermore, CUSHAW2-GPU with a Tesla K20c GPU achieves significant speedups over the multithreaded CUSHAW2, BWA-SW, Bowtie2, and GEM on the 12 cores of a high-end CPU for both single-end and paired-end alignment.
Towards an Efficient Implementation of an Accurate SPH Method
2020
A modified version of the Smoothed Particle Hydrodynamics (SPH) method is considered in order to overcome the loss of accuracy of the standard formulation. The summation of Gaussian kernel functions is employed, using the Improved Fast Gauss Transform (IFGT) to reduce the computational cost, while tuning the desired accuracy in the SPH method. This technique, coupled with an algorithmic design for exploiting the performance of Graphics Processing Units (GPUs), makes the method promising, as shown by numerical experiments.
Three-dimensional Fuzzy Kernel Regression framework for registration of medical volume data
2013
Abstract In this work a general framework for non-rigid 3D medical image registration is presented. It relies on two pattern recognition techniques: kernel regression and fuzzy c-means clustering. The paper provides theoretic explanation, details the framework, and illustrates its application to implement three registration algorithms for CT/MR volumes as well as single 2D slices. The first two algorithms are landmark-based approaches, while the third one is an area-based technique. The last approach is based on iterative hierarchical volume subdivision, and maximization of mutual information. Moreover, a high performance Nvidia CUDA based implementation of the algorithm is presented. The f…
Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model
2010
A Modern Graphics Processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two-dimensional Ising model [T. Preis et al., Journal of Chemical Physics 228 (2009) 4468–4477] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message P…
SIMULATING SPIN MODELS ON GPU: A TOUR
2012
The use of graphics processing units (GPUs) in scientific computing has gathered considerable momentum in the past five years. While GPUs in general promise high performance and excellent performance per Watt ratios, not every class of problems is equally well suitable for exploiting the massively parallel architecture they provide. Lattice spin models appear to be prototypic examples of problems suitable for this architecture, at least as long as local update algorithms are employed. In this review, I summarize our recent experience with the simulation of a wide range of spin models on GPU employing an equally wide range of update algorithms, ranging from Metropolis and heat bath updates,…
LightSpMV: Faster CSR-based sparse matrix-vector multiplication on CUDA-enabled GPUs
2015
Compressed sparse row (CSR) is a frequently used format for sparse matrix storage. However, the state-of-the-art CSR-based sparse matrix-vector multiplication (SpMV) implementations on CUDA-enabled GPUs do not exhibit very high efficiency. This has motivated the development of some alternative storage formats for GPU computing. Unfortunately, these alternatives are incompatible with most CPU-centric programs and require dynamic conversion from CSR at runtime, thus incurring significant computational and storage overheads. We present LightSpMV, a novel CUDA-compatible SpMV algorithm using the standard CSR format, which achieves high speed by benefiting from the fine-grained dynamic distribut…
AnyDSL: a partial evaluation framework for programming high-performance libraries
2023
This paper advocates programming high-performance code using partial evaluation. We present a clean-slate programming system with a simple, annotation-based, online partial evaluator that operates on a CPS-style intermediate representation. Our system exposes code generation for accelerators (vectorization/parallelization for CPUs and GPUs) via compiler-known higher-order functions that can be subjected to partial evaluation. This way, generic implementations can be instantiated with target-specific code at compile time. In our experimental evaluation we present three extensive case studies from image processing, ray tracing, and genome sequence alignment. We demonstrate that using partial …
Real-Time Monocular Segmentation and Pose Tracking of Multiple Objects
2016
We present a real-time system capable of segmenting multiple 3D objects and tracking their pose using a single RGB camera, based on prior shape knowledge. The proposed method uses twist-coordinates for pose parametrization and a pixel-wise second-order optimization approach which lead to major improvements in terms of tracking robustness, especially in cases of fast motion and scale changes, compared to previous region-based approaches. Our implementation runs at about 50–100 Hz on a commodity laptop when tracking a single object without relying on GPGPU computations. We compare our method to the current state of the art in various experiments involving challenging motion sequences and diff…