Search results for " Heavy-ion collision"

showing 10 items of 38 documents

Evolution of initial stage fluctuations in the glasma

2021

We perform a calculation of the one- and two-point correlation functions of energy density and axial charge deposited in the glasma in the initial stage of a heavy ion collision at finite proper time. We do this by describing the initial stage of heavy ion collisions in terms of freely evolving classical fields whose dynamics obey the linearized Yang-Mills equations. Our approach allows us to systematically resum the contributions of high momentum modes that would make a power series expansion in proper time divergent. We evaluate the field correlators in the McLerran-Venugopalan model using the glasma graph approximation, but our approach for the time dependence can be applied to a general…

PhysicsPower seriesquark-gluon plasmaField (physics)Nuclear Theory010308 nuclear & particles physicskvarkki-gluoniplasmaPhase (waves)FOS: Physical sciencesCharge (physics)Function (mathematics)Collision01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)nuclear physics0103 physical sciencesGraph (abstract data type)Proper timeStatistical physicsydinfysiikka010306 general physicsrelativistic heavy-ion collisions
researchProduct

Use of a running coupling in the NLO calculation of forward hadron production

2018

We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…

Position and momentum spaceQCD EVOLUTION01 natural sciencesAsymptotic freedomquantum chromodynamics: correctionhard scatteringHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependencestrong interaction: coupling constantEQUATIONkvanttifysiikkaComputingMilieux_MISCELLANEOUSPhysicsQuantum chromodynamicsQUARKhigher-order: 1nuclear physicssddc:12.39.StHigh Energy Physics - Phenomenology12.38.Bxsymbolsydinfysiikkahadron: forward productionFOS: Physical sciences114 Physical sciencesRENORMALIZATION-GROUP12.38.Cysymbols.namesakeCross section (physics)Theoretical physicsquantum chromodynamics0103 physical sciencessirontarelativistic heavy-ion collisionCoordinate spacenumerical calculations010306 general physicsp nucleus: scatteringcorrection: higher-orderCouplingta114010308 nuclear & particles physics25.75.-qCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONRenormalization groupFourier transformasymptotic freedom[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical Review D
researchProduct

Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider

2018

We present the next-to-leading-order event-by-event EKRT model predictions for the centrality dependence of the charged hadron multiplicity in the pseudorapidity interval $|\eta|\le 0.5$, and for the centrality dependence of the charged hadron flow harmonics $v_n\{2\}$ obtained from 2-particle cumulants, in $\sqrt{s_{NN}}=5.44$ TeV Xe+Xe collisions at the CERN Large Hadron Collider. Our prediction for the 0-5 \% central charged multiplicity is $dN_{\rm ch}/d\eta =1218\pm 46$. We also predict $v_n\{2\}$ in Xe+Xe collisions to increase more slowly from central towards peripheral collisions than those in a Pb+Pb system. We find that at $10 \dots 50$\% centralities $v_2\{2\}$ is smaller and $v_…

QuarkParticle physicsNuclear TheoryHadronFOS: Physical scienceshiukkasfysiikka01 natural sciences114 Physical sciencesNuclear physicsENERGYNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBAYESIAN-ANALYSISRapidityNUCLEAR COLLISIONS010306 general physicsNuclear ExperimentPhysicscollective flowta114010308 nuclear & particles physicsparticle and resonance productionHigh Energy Physics::PhenomenologyHIGH-DENSITY QCDQUARKMultiplicity (mathematics)Nuclear matterHigh Energy Physics - PhenomenologyPseudorapidityHigh Energy Physics::ExperimentImpact parameterhydrodynamic modelsCentralityrelativistic heavy-ion collisions
researchProduct

Scattering and gluon emission in a color field : a light-front Hamiltonian approach

2021

We develop a numerical method to nonperturbatively study scattering and gluon emission of a quark from a colored target using a light-front Hamiltonian approach. The target is described as a classical color field, as in the color glass condensate effective theory. The Fock space of the scattering system is restricted to the |q⟩+|qg⟩ sectors, but the time evolution of this truncated system is solved exactly. This method allows us to study the interplay between coherence and multiple scattering in gluon emission. It could be applied both to studying subeikonal effects in high-energy scattering and to understanding jet quenching in a hot plasma.

Quarkelectron-ion collisionsNuclear TheoryField (physics)High Energy Physics::LatticeFOS: Physical scienceshiukkasfysiikka114 Physical sciences01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)deep inelastic scattering0103 physical sciencesquantum chromodynamicsEffective field theory010306 general physicsquantum field theoryPhysics010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyTime evolutionGluonHigh Energy Physics - PhenomenologyQuantum electrodynamicssymbolskvanttiväridynamiikkakvanttikenttäteoriaHamiltonian (quantum mechanics)relativistic heavy-ion collisions
researchProduct

Kaon-proton strong interaction at low relative momentum via femtoscopy in Pb-Pb collisions at the LHC

2021

Physics letters / B 822, 136708 (2021). doi:10.1016/j.physletb.2021.136708

atom: exoticheavy ion: scatteringnucleon: paircorrelation [momentum]exoticheavy ion scatteringmomentum correlationmeasurement methodsHadron01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)effective field theoryALICE[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]effective field theory: chiralNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentchiral [effective field theory]effective field theory chiralPhysicsatom exoticSPECTROSCOPYatomstrong interactionPhysicsnucleontwo-particleheavy ion3. Good healthCERN LHC Collkinematicsforce CoulombScattering theoryNucleonforceCoulomb [force]Particle Physics - ExperimentParticle physicsNuclear and High Energy Physicsstrong interaction [K p]QC1-999FOS: Physical sciencesmomentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530K p: strong interaction ; heavy ion: scattering ; momentum: correlation ; force: Coulomb ; effective field theory: chiral ; atom: exotic ; nucleon: pair ; heavy ion scattering ; momentum correlation ; force Coulomb ; effective field theory chiral ; atom exotic ; nucleon pair ; CERN LHC Coll ; two-particle ; measurement methods ; sensitivity ; strong interaction ; ALICE ; kinematics ; TeV ; scattering length ; experimental results ; 5020 GeV-cms/nucleon ; hadron114 Physical sciencesscattering [heavy ion]0103 physical sciencesTeVSCATTERINGNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSensitivity (control systems)010306 general physicsexotic [atom]Exotic atomK p: strong interaction010308 nuclear & particles physicsScatteringforce: Coulombpairpair [nucleon]momentum: correlationScattering lengthHeavy Ions ExperimentsLOW-ENERGY K; DA-PHI-NE; SCATTERING; SPECTROSCOPYsensitivityLOW-ENERGY KchiralALICE heavy-ion collisions nuclear physicscorrelationscattering lengthCoulombHigh Energy Physics::ExperimenthadronDA-PHI-NEnucleon pairEnergy (signal processing)experimental results
researchProduct

Temperature dependence of η / s of strongly interacting matter: Effects of the equation of state and the parametric form of ( η / s ) ( T )

2020

We investigate the temperature dependence of the shear viscosity to entropy density ratio η/s using a piecewise linear parametrization. To determine the optimal values of the parameters and the associated uncertainties, we perform a global Bayesian model-to-data comparison on Au+Au collisions at √sNN=200 GeV and Pb+Pb collisions at 2.76 TeV and 5.02 TeV, using a 2+1D hydrodynamical model with the Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) initial state. We provide three new parametrizations of the equation of state (EoS) based on contemporary lattice results and hadron resonance gas, and use them and the widely used s95p parametrization to explore the uncertainty in the analysis due to the c…

collective flowquark-gluon plasmaequations of state of nuclear matterhydrodynamic modelshiukkasfysiikkaNuclear Experimentydinfysiikkarelativistic heavy-ion collisionsPhysical Review C
researchProduct

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC

2017

Physical review letters 118(16), 162302 (2017). doi:10.1103/PhysRevLett.118.162302

heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]transverse momentum [correlation function]correlation [momentum]550Pb-PbPb-Pb collisionsGeneral Physics and Astronomyhiukkasfysiikkanucl-exPP01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEDEPENDENCEddc:550Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentPERSPECTIVENuclear ExperimentPhysics and Astronomy (all); ALICE; LHCPhysicscorrelation function: transverse momentumPhysicsflow ; transverse ; momentum ; Pb-Pbtransverse momentum: correlationtwo-particleHanbury-Brown-Twiss effect:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.transverseTransverse planeCorrelation function (statistical mechanics)CERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]flowPseudorapidityLHCParticle Physics - ExperimentdeconfinementParticle physicscollectiveVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesmomentumtriangulationPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesBethe ansatzMomentumNuclear physicsCENTRALITYPhysics and Astronomy (all)statistical analysisFactorizationscattering [heavy ion]Relativistic heavy-ion collisions0103 physical sciencesALICE / ALICE2760 GeV-cmsNuclear Physics - ExperimentRapiditystructurenumerical calculations010306 general physicsNuclear Physicstwo-particle transverse momentum differential correlation functionAnsatzleadDEPENDENCE PERSPECTIVE CENTRALITY PP.ta114VDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431hep-ex010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]momentum: correlationBethe ansatzROOT-S(NN)=2.76 TEV; DEPENDENCE; PERSPECTIVE; PPNATURAL SCIENCES. Physics.rapiditypile-uptransverse momentum: factorizationfactorization [transverse momentum]correlation [transverse momentum]experimental results
researchProduct

Anisotropic flow in Xe-Xe collisions at √sNN = 5.44 TeV

2018

The first measurements of anisotropic flow coefficients for vn mid-rapidity charged particles in Xe–Xe collisions at √sNN=5.44 TeV are presented. Comparing these measurements to those from Pb–Pb collisions at √sNN=5.02 TeV, v2 is found to be suppressed for mid-central collisions at the same centrality, and enhanced for central collisions. The values of v3 are generally larger in Xe–Xe than in Pb–Pb at a given centrality. These observations are consistent with expectations from hydrodynamic predictions. When both and are divided by their corresponding eccentricities for a variety of initial state models, they generally scale with transverse density when comparing Xe–Xe and Pb–Pb, with some d…

hiukkasfysiikkaNuclear Experimentydinfysiikkarelativistic heavy-ion collisions
researchProduct

Exploration of jet substructure using iterative declustering in pp and Pb–Pb collisions at LHC energies

2020

The ALICE collaboration at the CERN LHC reports novel measurements of jet substructure in pp collisions at $\sqrt{s}$= 7 TeV and central Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Jet substructure of track-based jets is explored via iterative declustering and grooming techniques. We present the measurement of the momentum sharing of two-prong substructure exposed via grooming, the $z_{\rm{g}}$, and its dependence on the opening angle, in both pp and Pb-Pb collisions. We also present the first measurement of the distribution of the number of branches obtained in the iterative declustering of the jet, which is interpreted as the number of its hard splittings. In Pb-Pb collisions, we…

jet substructure pp and Pb-Pb collisionsheavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics::Instrumentation and DetectorsMonte Carlo methodPb-Pbjet quenchin; jet substructure; heavy-ion collisionshiukkasfysiikkapp and Pb-Pb collisionsnucl-expp01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEjetscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]color: coherenceNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentMonte Carlojet ; declustering ; pp ; Pb-PbPhysicsLarge Hadron ColliderPhysicsVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionlcsh:QC1-999PRIRODNE ZNANOSTI. Fizika.CERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431PYTHIAdeclusteringLHCpp collisionsParticle Physics - ExperimentCoherence (physics)Nuclear and High Energy Physicsp p: scatteringAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesNuclear physicsheavy-ion; pp collisions; jet substructure; ALICEscattering [heavy ion]0103 physical sciencesddc:530jet substructureNuclear Physics - Experiment010306 general physicsenhancementjet quenchin010308 nuclear & particles physicshep-exheavy-ion collisionsNATURAL SCIENCES. Physics.7000 GeV-cms/nucleon 2760 GeV-cms/nucleonHeavy ion interactionQGPQuark–gluon plasmaheavy-ioncoherence [color]SubstructureHigh Energy Physics::ExperimentLHC jet QGPLHC High-Energy Physicslcsh:Physicsexperimental results
researchProduct

ϕ meson production in p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV

2022

Small nuclear collisions are mainly sensitive to cold-nuclear-matter effects; however, the collective behavior observed in these collisions shows a hint of hot-nuclear-matter effects. The identified-particle spectra, especially the ϕ mesons which contain strange and antistrange quarks and have a relatively small hadronic-interaction cross section, are a good tool to study these effects. The PHENIX experiment has measured ϕ mesons in a specific set of small collision systems p+Al, p+Au, and 3He+Au, as well as d+Au [Adare et al., Phys. Rev. C 83, 024909 (2011)], at √sNN=200 GeV. The transverse-momentum spectra and nuclear-modification factors are presented and compared to theoretical-model pr…

leptonic semileptonic and radiative decaysparticle productionhiukkasfysiikkaydinfysiikkarelativistic heavy-ion collisions
researchProduct