Search results for " Inhibitor"

showing 10 items of 3219 documents

Green Tea Catechins Induce Inhibition of PTP1B Phosphatase in Breast Cancer Cells with Potent Anti-Cancer Properties: In Vitro Assay, Molecular Docki…

2020

The catechins derived from green tea possess antioxidant activity and may have a potentially anticancer effect. PTP1B is tyrosine phosphatase that is oxidative stress regulated and is involved with prooncogenic pathways leading to the formation of a.o. breast cancer. Here, we present the effect of selected green tea catechins on enzymatic activity of PTP1B phosphatase and viability of MCF-7 breast cancer cells. We showed also the computational analysis of the most effective catechin binding with a PTP1B molecule. We observed that epigallocatechin, epigallocatechin gallate, epicatechin, and epicatechin gallate may decrease enzymatic activity of PTP1B phosphatase and viability of MCF-7 cells.…

0301 basic medicineAntioxidantPhysiologymedicine.medical_treatmentClinical BiochemistryPhosphataseProtein tyrosine phosphataseEpigallocatechin gallateBiochemistrycomplex mixturesArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicinebreast cancermedicineheterocyclic compoundsViability assayMolecular Biologyepigallocatechinprotein tyrosine phosphatase inhibitorChemistrylcsh:RM1-950food and beveragesPTP1BCell BiologyCatechin bindingIn vitro030104 developmental biologyEpicatechin gallatelcsh:Therapeutics. PharmacologyBiochemistrySettore CHIM/03 - Chimica Generale E Inorganica030220 oncology & carcinogenesissense organshormones hormone substitutes and hormone antagonistsgreen tea catechinsAntioxidants
researchProduct

Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus …

2017

The aim of this study is to investigate in vitro the anticancer, antioxidant, and antibacterial activities of three low molecular weight subfractions I, II and III isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. The present study demonstrated that the low molecular weight subfractions III exhibited the strongest inhibitory activity towards breast carcinoma cells MDA-MB-231, prostatic carcinoma cells PC3, and breast cancer cells MCF7 with the half-maximal inhibitory concentration (IC50) value of 52,25 μg/mL, 60,66 μg/mL, and 54,92 μg/mL, respectively. The highest percentage of inhibition was noted at a concentration of 300 μg/mL in all the examined…

0301 basic medicineAntioxidantStaphylococcusmedicine.medical_treatmentlcsh:MedicineBacillusLaccasesBacillus subtilisPathology and Laboratory Medicinemedicine.disease_causeBiochemistryAntioxidantsNeoplasmsMedicine and Health SciencesCerrena unicolorStaphylococcus AureusFood sciencelcsh:ScienceMultidisciplinarybiologyAntimicrobialsChemistryDrugsEukaryota04 agricultural and veterinary sciencesWood040401 food scienceAnti-Bacterial AgentsBacterial PathogensEnzymesChemistryBacillus SubtilisExperimental Organism SystemsMedical MicrobiologyStaphylococcus aureusPhysical SciencesMCF-7 CellsProkaryotic ModelsPathogensAntibacterial activityResearch ArticleAntineoplastic AgentsResearch and Analysis MethodsMicrobiology03 medical and health sciencesMinimum inhibitory concentration0404 agricultural biotechnologyPhenolsMicrobial ControlmedicineHumansMicrobial PathogensIC50PharmacologyBacterialcsh:RChemical CompoundsOrganismsFungiBiology and Life SciencesProteinsbiology.organism_classificationIn vitro030104 developmental biologyEnzymologyAntibacterialslcsh:QPolyporalesPLOS ONE
researchProduct

On the prospect of serum exosomal miRNA profiling and protein biomarkers for the diagnosis of ascending aortic dilatation in patients with bicuspid a…

2018

Background: To determine the impact of circulating miRNA and protein activity on the severity of ascending aortic dilatation in patients with bicuspid (BAV) and tricuspid aortic valve (TAV). Methods: By reverse transcription polymerase chain reaction, exosomal circulating expression levels (versus healthy aorta) of miRNAs and absolute levels of transforming growth factor β (TGF-β), matrix metalloproteinases (MMP-2, -3 and -9), tissue inhibitors (TIMP-1, -2, -3 and -4), and soluble receptors for advanced glycation end products AGEs (sRAGE) were evaluated in ascending dilated aortas of 71 patients with different valve morphotype. Results: Less-dilated ascending aorta exhibited a specific miRN…

0301 basic medicineAortic valveAdultMalePathologymedicine.medical_specialtyBicuspid aortic valveHeart Valve Diseases030204 cardiovascular system & hematologyMatrix metalloproteinaseExosomesCohort Studies03 medical and health sciences0302 clinical medicineBicuspid aortic valveBicuspid Aortic Valve DiseaseGlycationmedicine.arteryAscending aortamedicineHumansProspective StudiesReceptorTissue inhibitorAortaAgedAortabusiness.industryAortic failure Ascending aortic dilatationGene Expression ProfilingTransforming growth factor-βMicroRNAMiddle Agedmedicine.diseaseAortic AneurysmReverse transcription polymerase chain reactionMatrix metalloproteinaseMicroRNAs030104 developmental biologymedicine.anatomical_structureAortic Valvecardiovascular systemFemaleTricuspid ValveCardiology and Cardiovascular MedicinebusinessBiomarkersInternational journal of cardiology
researchProduct

Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation

2016

Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3’,4’,5’-trimethoxybenzoyl)-3-iodoacetamido-6-methoxy benzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3’,4’,5’-trimethoxybenzoyl moi…

0301 basic medicineApoptosisAntineoplastic Agentchemistry.chemical_compoundBenzophenone0302 clinical medicinehemic and lymphatic diseasesFuranDrug DiscoverySTAT5 Transcription FactorTumor Cells CulturedThiopheneMoietyPhosphorylationSTAT5Molecular StructurebiologyChemistryBiological activityGeneral MedicineApoptosis; BCR/ABL expressing leukemia; In vitro antiproliferative activity; STAT5 inhibitors; Structure-activity relationship; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyLeukemia Myeloid Acute030220 oncology & carcinogenesisBCR/ABL expressing leukemiaApoptosis; BCR/ABL expressing leukemia; In vitro antiproliferative activity; STAT5 inhibitors; Structure-activity relationship; Antineoplastic Agents; Apoptosis; Benzofurans; Benzophenones; Cell Proliferation; Dose-Response Relationship Drug; Drug Screening Assays Antitumor; Humans; K562 Cells; Leukemia Myeloid Acute; Molecular Structure; Phosphorylation; STAT5 Transcription Factor; Structure-Activity Relationship; Tumor Cells Cultured; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyHumanStereochemistryAntineoplastic AgentsArticleNOBenzophenones03 medical and health sciencesK562 CellHumansStructure–activity relationshipBenzofuransCell ProliferationPharmacologyIndole testDose-Response Relationship DrugIn vitro antiproliferative activitySTAT5 inhibitorsDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryApoptosiSTAT5 inhibitorStructure-activity relationshipIn vitro030104 developmental biologybiology.proteinBenzofuranDrug Screening Assays AntitumorK562 Cells
researchProduct

Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP

2020

Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes&rsquo

0301 basic medicineAquatic OrganismsProgrammed cell deathCell SurvivalSurvivinDown-RegulationSecondary MetabolismX-Linked Inhibitor of Apoptosis ProteinTRAILJurkat cellsArticleTNF-Related Apoptosis-Inducing LigandJurkat Cells03 medical and health sciences0302 clinical medicinemarine actinomycetesDownregulation and upregulationDrug DiscoveryOxazinesSurvivinHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyFADDBenzopyreneslcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSCaspase 8therapybiologyChemistryProdigiosinQuinonesapoptosisGeneral MedicineHCT116 Cells3. Good healthXIAPActinobacteria030104 developmental biologylcsh:Biology (General)Drug Resistance NeoplasmApoptosis030220 oncology & carcinogenesisCancer cellbiology.proteinCancer researchGene DeletionCells
researchProduct

Altered gastrointestinal motility in an animal model of Lesch-Nyhan disease.

2018

Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt(−)). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt(−) tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol a…

0301 basic medicineAtropineMaleHypoxanthine PhosphoribosyltransferaseLesch-Nyhan SyndromeDopaminemedicine.disease_causeSettore BIO/09 - FisiologiaLesch-NyhanMice0302 clinical medicineEnzyme InhibitorsEvoked PotentialsMyenteric plexusHGprt deficient miceNeurotransmitter AgentsBrainNG-Nitroarginine Methyl EsterKnockout mouseCytokinesAcetylcholinemedicine.drugmedicine.medical_specialtyCarbacholTyrosine 3-MonooxygenaseColonMotilityMice TransgenicIn Vitro TechniquesEndocrine and Autonomic SystemArticleContractility03 medical and health sciencesCellular and Molecular NeuroscienceDopamineInternal medicinemedicineAnimalsCytokineEndocrine and Autonomic Systemsbusiness.industryMuscle SmoothBenzazepinesMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinologyGene Expression RegulationHGprt enzymeFaceOxidative streCarbacholNeurology (clinical)Lipid PeroxidationbusinessGastrointestinal MotilityReactive Oxygen Species030217 neurology & neurosurgeryOxidative stressAutonomic neuroscience : basicclinical
researchProduct

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1

2018

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…

0301 basic medicineBioconversionStatic Electricity030106 microbiologychemistry.chemical_elementBioengineeringSelenious AcidSettore BIO/19 - Microbiologia GeneraleSelenium pollutionSelenium03 medical and health sciencesMinimum inhibitory concentrationchemistry.chemical_compoundNanoparticleBiosynthesisRhodococcusParticle SizeSelenite Rhodococcus aetherivorans Selenium nanoparticles Selenium nanorods Biogenic nanostructuresSelenium nanorodMolecular BiologyNanotubesbiologyBiogenic nanostructureRhodococcus aetherivoranSpectrometry X-Ray EmissionGeneral Medicinebiology.organism_classificationDynamic Light ScatteringSelenium nanoparticleBacteria AerobicNanotube030104 developmental biologychemistryBiochemistry13. Climate actionSelenious AcidSeleniteNanoparticlesMetalloidRhodococcusSeleniumRhodococcuBiotechnologyNew Biotechnology
researchProduct

Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

2017

Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin aIIbb3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We ap…

0301 basic medicineBlood PlateletsPHOSPHATASEImmunologyBlotting WesternUBIQUITINATIONBINDING PROTEIN STXBP5Biochemistry03 medical and health scienceschemistry.chemical_compoundGTP-binding protein regulatorsP2Y12HumansProtein phosphorylationPlatelet activationIloprostPHOSPHORYLATIONCOMBINATIONChemistryPhosphoproteomicsPATHWAYSCell BiologyHematologyPlatelet ActivationSIGNALING REVEALSCell biologyAdenosine DiphosphateAdenosine diphosphate030104 developmental biologyCLOPIDOGRELPhosphorylationPROTEOMICSSECRETIONSignal transductionPlatelet Aggregation InhibitorsSignal TransductionBlood
researchProduct

The potential of cystatin C as a predictive biomarker in breast cancer

2020

Breast cancer (BCa) is the leading cause of cancer-related deaths among women. Numerous efforts are being directed toward identifying novel tissue and/or circulating molecular markers that may help clinicians in detecting early-stage BCa patients and in providing an accurate estimation of the prognosis and prediction of response to clinical treatments. In this setting, emerging evidence has indicated Cystatin C (Cyst C), as the most potent endogenous inhibitor of cysteine cathepsins, as a possible useful marker in the clinical management of BCa patients.This review analyzes the results of emerging studies underpinning a potential clinical role of Cyst C, as additional marker in BCa.Cyst C e…

0301 basic medicineBreast NeoplasmsMetastasiCysteine proteinaseMetastasisCathepsin03 medical and health sciences0302 clinical medicineBreast cancerBreast cancerBiomarkers Tumorproteinase inhibitorMedicineAnimalsHumansPharmacology (medical)Cystatin Cskin and connective tissue diseasesPredictive biomarkerNeoplasm StagingCathepsinbiologybusiness.industryTumor progressionjCystatin C CystatinCysteine proteinasesmedicine.diseasePrognosis030104 developmental biologyOncologyCystatin CTumor progression030220 oncology & carcinogenesistumor markerCancer researchbiology.proteinDisease ProgressionFemalebusiness
researchProduct