Search results for " Instrumentation."
showing 10 items of 712 documents
The FIRST experiment at GSI
2012
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
2021
The NEXT collaboration: et al.
Development of a low-energy radioactive ion beam facility for the MARA separator
2016
A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyv\"askyl\"a, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.
High homogeneity permanent magnet for diamond magnetometry
2020
Abstract Halbach magnets are a source of homogeneous magnetic field in an enclosed volume while keeping stray fields at a minimum. Here, we present the design, construction, and characterization for a stack of two Halbach rings with 10 cm inner diameter providing a homogeneous ( 100 ppm over 1.0 × 1.0 × 0.5 cm 3 ) magnetic field of around 105 mT, which will be used for a diamond based microwave-free widefield imaging setup. The final characterization is performed with a novel fiberized diamond-based sensor on a 3D translation stage documenting the high homogeneity of the constructed Halbach array and its suitability for the proposed use.
Zero- to Ultralow-Field Nuclear Magnetic Resonance $J$-Spectroscopy with Commercial Atomic Magnetometers
2019
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is an alternative spectroscopic method to high-field NMR, in which samples are studied in the absence of a large magnetic field. Unfortunately, there is a large barrier to entry for many groups, because operating the optical magnetometers needed for signal detection requires some expertise in atomic physics and optics. Commercially available magnetometers offer a solution to this problem. Here we describe a simple ZULF NMR configuration employing commercial magnetometers, and demonstrate sufficient functionality to measure samples with nuclear spins prepolarized in a permanent magnet or initialized using parahydrogen. This opens …
Manufacturing an active X-ray mirror prototype in thin glass
2015
Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported he…
Improvement in fast particle track reconstruction with robust statistics
2014
The IceCube project has transformed one cubic kilometer of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This manuscript describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muo…
Resolving the octant of theta(23) with T2K and NOvA
2013
Preliminary results of MINOS experiment indicate that theta(23) is not maximal. Global fits to world neutrino data suggest two nearly degenerate solutions for theta(23): one in the lower octant (LO: theta(23) 45 degrees). v(mu) -> v(e) oscillations in superbeam experiments are sensitive to the octant and are capable of resolving this degeneracy. We study the prospects of this resolution by the current T2K and upcoming NOvA experiments. Because of the hierarchy-delta(CP) degeneracy and the octant delta(CP) degeneracy, the impact of hierarchy on octant resolution has to be taken into account. As in the case of hierarchy determination, there exist favorable (unfavorable) values of delta(CP) fo…
The Mu3e Data Acquisition
2020
The Mu3e experiment aims to find or exclude the lepton flavour violating decay $\mu^+\to e^+e^-e^+$ with a sensitivity of one in 10$^{16}$ muon decays. The first phase of the experiment is currently under construction at the Paul Scherrer Institute (PSI, Switzerland), where beams with up to 10$^8$ muons per second are available. The detector will consist of an ultra-thin pixel tracker made from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), complemented by scintillating tiles and fibres for precise timing measurements. The experiment produces about 100 Gbit/s of zero-suppressed data which are transported to a filter farm using a network of FPGAs and fast optical links. On the filte…
The MuPix System-on-Chip for the Mu3e Experiment
2016
Nuclear instruments & methods in physics research / A 845, 194 - 198 (2016). doi:10.1016/j.nima.2016.06.095