Search results for " Instrumentation."

showing 10 items of 712 documents

The FIRST experiment at GSI

2012

The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…

Nuclear and High Energy PhysicsIon beamPhysics::Instrumentation and Detectorsmedicine.medical_treatmentNuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ScintillatorElementary-particleFIRST7. Clean energy01 natural sciencesParticle detectorWire chamberNuclear physicsDipole magnetFragmentationPARTICLE THERAPYhadrontherapy; fragmentation; nuclear physics; elementary-particle; instrumentation; experimental methodsHadrontherapy0103 physical sciencesmedicineNeutron detectionddc:530Gaseous detectorION-BEAM010306 general physicsNuclear ExperimentDETECTORInstrumentationGEANT4PARTICLE THERAPY; FLUKA CODE; ION-BEAM; FRAGMENTATION; BENCHMARKING; RADIOTHERAPY; TRANSPORT; DETECTOR; GEANT4; FIRSTPhysicsParticle therapyTime projection chamber010308 nuclear & particles physicsExperimental methodsDetectorScintillatorTRANSPORTSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Hadrontherapy; Fragmentation; Nuclear physics; Elementary-particle; Experimental methods; InstrumentationFLUKA CODEBENCHMARKINGElementary-particle; Experimental methods; Fragmentation; Hadrontherapy; Instrumentation; Nuclear physics; Instrumentation; Nuclear and High Energy PhysicsRADIOTHERAPY
researchProduct

Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

2021

The NEXT collaboration: et al.

Nuclear and High Energy PhysicsIonizationPhysics - Instrumentation and DetectorsIonitzacióFOS: Physical sciencesdouble beta decayRichardson–Lucy deconvolutionBragg peakElectronQC770-79801 natural sciencesSignalHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)IonizationDouble beta decayNuclear and particle physics. Atomic energy. Radioactivitygas0103 physical sciences010306 general physicsPhysics010308 nuclear & particles physicsRaigs beta -- DesintegracióInstrumentation and Detectors (physics.ins-det)Computational physicsdark matter and double beta decay (experiments)Beta rays -- DecayDeconvolutionEnergy (signal processing)
researchProduct

Development of a low-energy radioactive ion beam facility for the MARA separator

2016

A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyv\"askyl\"a, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

Nuclear and High Energy PhysicsMaterials sciencePhysics - Instrumentation and DetectorsIon beamNuclear engineeringFOS: Physical sciences01 natural sciences7. Clean energylaw.inventionIonLow energylawIonization0103 physical sciencesPhysical and Theoretical ChemistryNuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentSeparator (electricity)010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Condensed Matter PhysicsLaserMass measurementAtomic and Molecular Physics and OpticsPhysics::Accelerator Physics
researchProduct

High homogeneity permanent magnet for diamond magnetometry

2020

Abstract Halbach magnets are a source of homogeneous magnetic field in an enclosed volume while keeping stray fields at a minimum. Here, we present the design, construction, and characterization for a stack of two Halbach rings with 10 cm inner diameter providing a homogeneous ( 100 ppm over 1.0 × 1.0 × 0.5 cm 3 ) magnetic field of around 105 mT, which will be used for a diamond based microwave-free widefield imaging setup. The final characterization is performed with a novel fiberized diamond-based sensor on a 3D translation stage documenting the high homogeneity of the constructed Halbach array and its suitability for the proposed use.

Nuclear and High Energy PhysicsMaterials sciencePhysics - Instrumentation and DetectorsMagnetometerBiophysicsFOS: Physical sciencesApplied Physics (physics.app-ph)engineering.material010402 general chemistry01 natural sciencesBiochemistryHomogeneous magnetic field030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineOpticslawHomogeneity (physics)Quantum Physicsbusiness.industryDiamondPhysics - Applied PhysicsInstrumentation and Detectors (physics.ins-det)Condensed Matter Physics0104 chemical sciencesMagnetic fieldDipoleHalbach arrayMagnetengineeringbusinessQuantum Physics (quant-ph)
researchProduct

Zero- to Ultralow-Field Nuclear Magnetic Resonance $J$-Spectroscopy with Commercial Atomic Magnetometers

2019

Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is an alternative spectroscopic method to high-field NMR, in which samples are studied in the absence of a large magnetic field. Unfortunately, there is a large barrier to entry for many groups, because operating the optical magnetometers needed for signal detection requires some expertise in atomic physics and optics. Commercially available magnetometers offer a solution to this problem. Here we describe a simple ZULF NMR configuration employing commercial magnetometers, and demonstrate sufficient functionality to measure samples with nuclear spins prepolarized in a permanent magnet or initialized using parahydrogen. This opens …

Nuclear and High Energy PhysicsMaterials scienceZero field NMRPhysics - Instrumentation and DetectorsMagnetometerBiophysicsFOS: Physical sciences010402 general chemistrySpin isomers of hydrogen01 natural sciencesBiochemistry030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineNuclear magnetic resonancelawPhysics - Chemical PhysicsHyperpolarization (physics)SpectroscopyChemical Physics (physics.chem-ph)SpinsInstrumentation and Detectors (physics.ins-det)Condensed Matter Physics0104 chemical sciencesMagnetic fieldMagnet
researchProduct

Manufacturing an active X-ray mirror prototype in thin glass

2015

Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported he…

Nuclear and High Energy PhysicsMaterials scienceactive optic02 engineering and technologyactive optics; piezoelectric actuators; thin glass mirrors; X-ray mirrors; Instrumentation; Nuclear and High Energy Physics; RadiationSettore ING-INF/01 - Elettronica01 natural sciencesSignallaw.invention010309 opticsSettore FIS/05 - Astronomia E AstrofisicaOpticslaw0103 physical sciencesInstrumentationNuclear and High Energy PhysicRadiationbusiness.industrypiezoelectric actuatorthin glass mirrorActive optics021001 nanoscience & nanotechnologyLaserPiezoelectricitySynchrotronPhotolithography0210 nano-technologyActuatorbusinessX-ray mirrorVoltageJournal of Synchrotron Radiation
researchProduct

Improvement in fast particle track reconstruction with robust statistics

2014

The IceCube project has transformed one cubic kilometer of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This manuscript describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muo…

Nuclear and High Energy PhysicsParticle physicsCherenkov detectorPhysics::Instrumentation and DetectorsFOS: Physical sciencesddc:500.2Neutrino telescopeTrack reconstructionlaw.inventionIceCubelawCoincidentAngular resolutionddc:530InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingIce CubePhysicsMuonTrack (disk drive)DetectorIceCube; Neutrino astrophysics; Neutrino telescope; Robust statistics; Track reconstructionRobust statisticsNeutrino astrophysicsNeutrino detectorHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Resolving the octant of theta(23) with T2K and NOvA

2013

Preliminary results of MINOS experiment indicate that theta(23) is not maximal. Global fits to world neutrino data suggest two nearly degenerate solutions for theta(23): one in the lower octant (LO: theta(23) 45 degrees). v(mu) -> v(e) oscillations in superbeam experiments are sensitive to the octant and are capable of resolving this degeneracy. We study the prospects of this resolution by the current T2K and upcoming NOvA experiments. Because of the hierarchy-delta(CP) degeneracy and the octant delta(CP) degeneracy, the impact of hierarchy on octant resolution has to be taken into account. As in the case of hierarchy determination, there exist favorable (unfavorable) values of delta(CP) fo…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesSilver ChannelOctant (solid geometry)01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SymmetryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Oscillation ExperimentsNeutrino Physics010306 general physicsNeutrino oscillationPhysicsNOνAMixing Matrix010308 nuclear & particles physicsDegenerate energy levelsCp ViolationInstrumentation and Detectors (physics.ins-det)High Energy Physics - PhenomenologyCP violationMINOSBeyond Standard ModelLine-Experiment-SimulatorMass MatrixCP violationNeutrinoIndraStra Global
researchProduct

The Mu3e Data Acquisition

2020

The Mu3e experiment aims to find or exclude the lepton flavour violating decay $\mu^+\to e^+e^-e^+$ with a sensitivity of one in 10$^{16}$ muon decays. The first phase of the experiment is currently under construction at the Paul Scherrer Institute (PSI, Switzerland), where beams with up to 10$^8$ muons per second are available. The detector will consist of an ultra-thin pixel tracker made from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), complemented by scintillating tiles and fibres for precise timing measurements. The experiment produces about 100 Gbit/s of zero-suppressed data which are transported to a filter farm using a network of FPGAs and fast optical links. On the filte…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsMesonPhysics::Instrumentation and Detectorsdata acquisitionfibre: opticalFOS: Physical scienceshigh energy physics instrumentationprinted circuits7. Clean energycomputer: networkOptical fiber communicationData acquisitionsemiconductor detector: pixelOptical switchesmultiprocessor: graphicshardwareSensitivity (control systems)muon+: decay[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Electrical and Electronic EngineeringGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)scintillation counterFPGAClocksPhysicsData acquisition (DAQ)MuonPixelMesonsDetectorlepton: flavor: violationField programmable gate arraysDetectorsInstrumentation and Detectors (physics.ins-det)sensitivityNuclear Energy and EngineeringFilter (video)field programmable gate arrays (FPGAs)Data acquisition (DAQ); field programmable gate arrays (FPGAs); high energy physics instrumentation; printed circuitselectronics: readoutHigh Energy Physics::ExperimentLeptonelectronics: design
researchProduct

The MuPix System-on-Chip for the Mu3e Experiment

2016

Nuclear instruments & methods in physics research / A 845, 194 - 198 (2016). doi:10.1016/j.nima.2016.06.095

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesIntegrated circuit53001 natural sciencesHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)Opticslaw0103 physical sciencesddc:530System on a chipDetectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detPhysicsPixelAnalogue electronics010308 nuclear & particles physicsbusiness.industryhep-exHigh voltageInstrumentation and Detectors (physics.ins-det)ChipCMOSbusinessParticle Physics - ExperimentLepton
researchProduct