6533b861fe1ef96bd12c4351
RESEARCH PRODUCT
Improvement in fast particle track reconstruction with robust statistics
A. R. FazelyT. WaldenmaierN. WhitehornS. ToscanoA. OlivasS. SchoenenC. PfendnerG. C. HillTyce DeyoungM. CasierH. P. BretzM. W.e. SmithM. LabareD. SeckelP. A. EvensonP. DesiatiR. HoffmannE. UngerY. SestayoL. GladstoneM. L. BenabderrahmaneM. Lesiak-bzdakT. SalamehChristian SpieringS. ZierkeM. UsnerKael HansonJenni AdamsT. GlüsenkampC. De ClercqC. KopperK. JeroK. D. HoffmanM. VraegheA. SchönwaldS. CohenG. W. SullivanS. HussainN. Van EijndhovenL. MohrmannM. DunkmanK. D. De VriesM. RameezA. H. Cruz SilvaD. BerleyR. C. BaySteven W. BarwickV. BaumS. M. SabaCarsten RottJ. CaseyL. PaulW. HuelsnitzT. KargJuanan AguilarS. SeunarineJ. C. DavisC. H. WiebuschT. Fischer-waselsP. RedlJ. Becker TjusJ. AuffenbergOscar MaciasJ. DaughheteeD. J. BoersmaD. BindigSegev BenzviM. RibordyD. Z. BessonRezo ShanidzeL. KöpkeD. BoseS. R. KleinS. R. KleinM. StamatikosE. PinatJ. LeuteS. C. NowickiGiorgio MaggiJ. J. BeattyK. RawlinsL. GerhardtL. GerhardtL. BrayeurD. AltmannA. KarleJ. S. GallagherM. MerckAllan HallgrenG. T. PrzybylskiR. EaganCh WeaverA. FedynitchK. KringsH. WissingP. B. PriceA. TamburroR. BruijnM. KowalskiA. FranckowiakMarkus AckermannS. FlisE. JacobiJürgen BrunnerA. IshiharaK. WiebeT. StezelbergerJ. P. YanezJ. KläsR. HellauerTodor StanevJ. A. PepperL. RädelS. WesterhoffS. Ter-antonyanG. BinderG. BinderR. ReimannA. StasikTeresa MontaruliR. G. StokstadC. HaC. HaE. MiddellSofia VallecorsaM. BissokT. R. WoodM. BakerB. EberhardtG. KohnenJ. BlumenthalS. SchönebergA. OmairatD. HeinenJ. LünemannJ. L. KelleyD. PielothI. TaboadaP. HallenA. GoldschmidtStephanie HickfordH. G. SanderM. VogeP. O. HulthJ. A. GoodmanThomas K. GaisserMarcos SantanderM. DanningerH. NiederhausenS. EulerM. WellonsC. Pérez De Los HerosB. RuzybayevJ. FeintzeigB. ChristyDariusz GoraO. SchulzG. S. JaparidzeL. SchulteA. StößlJ. Van SantenM. G. AartsenM. KrasbergM. DayD. F. CowenJ. JacobsenReina H. MaruyamaK. WoschnaggJ. KirylukG. YodhT. KuwabaraS. BöserWolfgang RhodeD. R. NygrenHermann KolanoskiK. ClarkM. J. LarsonA. Haj IsmailM. WallraffElisa BernardiniK. MaseG. M. SpiczakH. LandsmanP. BerghausS. KopperRasha AbbasiE. A. StrahlerH. S. MatisM. VehringF. ClevermannT. RuheS. De RidderX. W. XuM. ZollD. R. WilliamsR. MorseB. KaminskyJ. EischS. OdrowskiR. NahnhauerFrancis HalzenD. GrantC. WendtA. Van OverloopK. HelbingO. JlelatiA. BernhardA. TepeJ. KunnenBenjamin RechtM. LeuermannF. McnallyE. BlaufussR. StrömP. ZarzhitskyY. AbdouK. FrantzenN. KurahashiChristopher RéD. HeeremanAlexander KappesK. SchattoD. RyckboschJ. MillerA. ChristovS. BohaichukA. HomeierK. MeagherK. FilimonovA. O'murchadhaN. MilkeS. BechetP. A. ToaleJ. H. KöhneO. FadiranJ. ZiemannS. YoshidaA. ObertackeH. TaavolaK. JagielskiD. J. KoskinenT. FeuselsD. ChirkinS. CoendersB. RiedelA. SchukraftK. H. BeckerM. J. CarsonM. RichmanD. T. GrandmontD. L. XuC. FinleyT. SchmidtK. HoshinaJ. P. RodriguesMarkus AhlersM. WolfA. GroßThomas MeuresT. FuchsD. SoldinS. TilavJ. PosseltElisa ResconiU. NaumannA. M. BrownK. HultqvistC. WalckC. BohmG. KrollX. BaiC. SheremataJ. G. GonzalezG. TešićSubir SarkarJ. MadsenOlga BotnerG. GolupF. ScheriauM. SchmitzS. MiareckiS. MiareckiJ. C. Díaz-vélezsubject
Nuclear and High Energy PhysicsParticle physicsCherenkov detectorPhysics::Instrumentation and DetectorsFOS: Physical sciencesddc:500.2Neutrino telescopeTrack reconstructionlaw.inventionIceCubelawCoincidentAngular resolutionddc:530InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingIce CubePhysicsMuonTrack (disk drive)DetectorIceCube; Neutrino astrophysics; Neutrino telescope; Robust statistics; Track reconstructionRobust statisticsNeutrino astrophysicsNeutrino detectorHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for Astrophysicsdescription
The IceCube project has transformed one cubic kilometer of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This manuscript describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muon; and (2) the coincident event problem, which is to determine how many muons are active in the detector during a time window. Rather than solving these problems by developing more complex physical models that are applied at later stages of the analysis, our approach is to augment the detectors early reconstruction with data filters and robust statistical techniques. These can be implemented at the level of on-line reconstruction and, therefore, improve all subsequent reconstructions. Using the metric of median angular resolution, a standard metric for track reconstruction, we improve the accuracy in the initial reconstruction direction by 13%. We also present improvements in measuring the number of muons in coincident events: we can accurately determine the number of muons 98% of the time.
year | journal | country | edition | language |
---|---|---|---|---|
2014-02-01 | Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |