0000000000141676
AUTHOR
M. Wolf
Measurement of the cosmic ray energy spectrum with IceTop-73
Physical review / D 88(4), 042004 (2013). doi:10.1103/PhysRevD.88.042004
A Search for IceCube Events in the Direction of ANITA Neutrino Candidates
During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…
Test of Low-Energy Theorems forH1(γ→,π0)H1in the Threshold Region
The photon asymmetry in the reaction H-1(, pi (0))H-1 close to threshold has been measured for the first time with the photon spectrometer TAPS using linearly polarized photons from the tagged-photon facility at the Mainz Microtron MAMI. The total and differential cross sections were also measured simultaneously with the photon asymmetry. This allowed determination of the S-wave and all three P-wave amplitudes. The values obtained at threshold are E0+ = [-1.33 +/- 0.08(stat) +/- 0.03(syst)] x 10(-3)/m(pi+), P-1 = [9.47 +/- 0.08(stat) +/- 0.29(syst)] x 10(-3)q /m(pi+)(2) P-2 [-9.46 +/- 0.1(stat) +/- 0.29(syst)] x 10(-3)q/m(pi+)(2), and P-3 = [11.48 +/- 0.06(stat) +/- 0.35(syst)] x 10(-3)q/m(…
IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog
Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …
The IceCube realtime alert system
Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…
PINGU: a vision for neutrino and particle physics at the South Pole
The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octan…
Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory
We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% …
Searches for Sterile Neutrinos with the IceCube Detector
The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\mathrm{sin}^2 2\theta_{24} \leq$ 0.02 at $\Delta m^2 \sim$ 0.3 $\mathrm{eV}^…
Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube
Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …
Observation of the cosmic-ray shadow of the Moon with IceCube
We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector config…
Search for neutrino-induced particle showers with IceCube-40
We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of…
Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube
Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere dataset consisting primarily of nu_e and nu_tau charged current and neutral current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky was extracted from data taken during 659.5 days of livetime recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in the Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of …
Review on mechanical joining by plastic deformation
Mechanical joining technologies are increasingly used in multi-material lightweight constructions and offer opportunities to create versatile joining processes due to their low heat input, robustness to metallurgical incompatibilities and various process variants. They can be categorised into technologies which require an auxiliary joining element, or do not require an auxiliary joining element. A typical example for a mechanical joining process with auxiliary joining element is self-piercing riveting. A wide range of processes exist which are not requiring an auxiliary joining element. This allows both point-shaped (e.g., by clinching) and line-shaped (e.g., friction stir welding) joints t…
Characteristics of the diffuse astrophysical electron and Tau neutrino flux with six years of IceCube high energy cascade data
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of φastro=1.66-0.27+0.25 at E0=100 TeV, in agreement with IceCube's complementary muon neutrino results and wit…
Measurement of the Atmospheric ve flux in IceCube
We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 $\pm$ 66(stat.) $\pm$ 88(syst.) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muo…
Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU
Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006
Measurement of Atmospheric Neutrino Oscillations with IceCube
We present the first statistically significant detection of neutrino oscillations in the high-energy regime ($>$ 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010-2011. This measurement is made possible by the low energy threshold of the DeepCore detector ($\sim 20$ GeV) and benefits from the use of the IceCube detector as a veto against cosmic ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20 -- 100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV -- 10 TeV) was extracted from IceCube data to constrain systematic uncertainties. Disappearance of low-energy upw…
Detection of charged pions and protons in the segmented electromagnetic calorimeter TAPS
We present the characteristics of the segmented BaF2 calorimeter TAPS for the measurement of charged pions and protons. The method of particle identification exploits the relation between the kinetic energy of a particle, its mass and the time-of-flight required to reach the detector. The detection efficiency is calculated using GEANT-GCALOR simulations. The analysis method is applied in the reaction Ar-40 + Ca-nat at 0.8A GeV. The simultaneous detection of charged pions and protons can be used to search for correlated pairs signalling the de-excitation of the Delta(1232) resonance. (C) 1998 Elsevier Science B.V. All rights reserved.
An improved method for measuring muon energy using the truncated mean of dE/dx
Nuclear instruments & methods in physics research / A 703, 190 - 198 (2013). doi:10.1016/j.nima.2012.11.081
Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration
A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle dist…
South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy
AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore>100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use…
Two neutral pion photoproduction off the proton between threshold and 800 MeV
Abstract The photoproduction of two neutral pions off the proton has been studied for incident photon energies between E γ = 309 MeV (threshold) and 792 MeV with the TAPS photon spectrometer at the Mainz Microtron MAMI. Both 3γ- and 4γ-events have been analysed in order to deduce the total p ( γ , 2 π 0 ) p cross section. The total cross section is less than 300 nb between threshold and ⋍ 460 MeV, beyond which it starts to rise to a maximum value of about 11 μb at around 750 MeV. For the highest energies it starts to decrease again. The 4γ-sample has been used to reconstruct 2 neutral pions from the above reaction channel by an invariant mass and a missing mass analysis. After reconstructio…
Generation and Evolution of Spin-, Valley-, and Layer-Polarized Excited Carriers in Inversion-Symmetric WSe2
We report the spin-selective optical excitation of carriers in inversion-symmetric bulk samples of the transition metal dichalcogenide (TMDC) WSe2. Employing time- and angle-resolved photoelectron spectroscopy (trARPES) and complementary time-dependent density functional theory (TDDFT), we observe spin-, valley-, and layer-polarized excited state populations upon excitation with circularly polarized pump pulses, followed by ultrafast ( < 100 fs ) scattering of carriers towards the global minimum of the conduction band. TDDFT reveals the character of the conduction band, into which electrons are initially excited, to be two-dimensional and localized within individual layers, whereas at t…
Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments
The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…
Exclusive measurement of quasi-free η-photoproduction from deuterium
Quasi-free photoproduction of eta-mesons from the deuteron has been measured at the tagged photon facility of the Mainz microtron MAMI with the photon spectrometer TAPS for incident photon energies from the production threshold at 630 MeV up to 820 MeV. In a fully exclusive measurement eta-mesons and recoil nucleons were detected in coincidence. At incident photon energies above the production threshold on the free nucleon, where final state interaction effects are negligible, an almost constant ratio of sigma(n)/sigma(p)=0.66+/-0.10 was found. At lower incident photon energies the ratio rises due to re-scattering effects. The average ratio agrees with the value extracted from a comparison …
Schöne neue Welt der Prävention? Zu Voraussetzungen und Reichweite von Public Health Genetics
Recent developments in molecular genetics and genomics have not only provided new insights into the biological foundation of life but have also brought about significant changes in the ways health and disease are understood. Nowadays, understanding how the human genome interacts with health-related behaviour and diverse environments is recognised to be the key for biomedical innovation. Even though advances in genetics and genomics have unveiled a whole new complexity of the genetic underpinnings of health and disease and clearly show the need for further investigation, studies of health-related genetic traits already give rise to novel approaches to prevention. As a relatively new field Pu…
Constraints on Minute-Scale Transient Astrophysical Neutrino Sources
High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient so…
Measurement of South Pole ice transparency with the IceCube LED calibration system
The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube …
Improvement in fast particle track reconstruction with robust statistics
The IceCube project has transformed one cubic kilometer of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This manuscript describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muo…
Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube
A diffuse flux of astrophysical neutrinos above $100\,\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\,\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sou…
IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters
Physical review / D 88(12), 122001 (2013). doi:10.1103/PhysRevD.88.122001
Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector
We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent s…
"Table 1" of "Compton scattering from the free and bound proton at backward angles above pi threshold."
No description provided.
"Table 1" of "Test of low-energy theorems for p(gamma(pol.),pi0)p in the threshold region."
Polarized photon beam.