6533b7ddfe1ef96bd1273dad
RESEARCH PRODUCT
PINGU: a vision for neutrino and particle physics at the South Pole
A. OlivasF. HuangG. NeerS. EulerJ. Van SantenM. DayKael HansonJanet ConradHrvoje DujmovicIgnacio TaboadaSteven W. BarwickChristian BohmD. HebeckerAongus O'murchadhaSegev BenzviR. CrossM. WolfM. JurkovicM. RongenM. KauerB. RelethfordChristian SpieringSpencer KleinSpencer KleinKonstancja SataleckaM. SongT. L. CarverMike RichmanMaximilian MeierThomas MeuresChristoph RaabPaolo DesiatiGeorge JaparidzeM. SchimpG. KrücklP. SchlunderHermann KolanoskiB. HansmannRoger MooreG. C. HillE. FriedmanD. TosiH. TaavolaJ. LünemannL. BrayeurSally RobertsonM. KrollS. HickfordA. MeliKara HoffmanK. D. De VriesT. EhrhardtN. Van EijndhovenJustin VandenbrouckeM. LeuermannE. BlaufussD. J. BoersmaK. MaseElisa ResconiK. HoshinaK. HoshinaC. KrügerKurt WoschnaggPaul EvensonD. SeckelS. FaheySebastian BöserM. KowalskiG. H. CollinC. HaackM. J. WeissA. R. FazelyTyce DeyoungP. A. ToaleS. MárkaM. LabareU. NaumannD. BerleyW. GiangM. QuinnanC. KopperJ. BraunT. KittlerS. FlisGlenn SpiczakG. GolupGisela AntonM. DunkmanJ. L. LanfranchiR. ReimannImre BartosStijn BlotK. KringsM. GlaglaKarim GhorbaniS. SeunarineE. PinatDmitry ChirkinL. MohrmannR. HoffmannS. KopperAntonio PalazzoSimona ToscanoM. VogeSpencer AxaniM. MandelartzS. CoendersT. R. WoodS. C. NowickiT. C. ArlenG. MerinoWolfgang RhodeN. WandkowskyAlexander KappesA. ChristovMinjin JeongJ. L. KelleyS. InL. GladstoneG. KaragiorgiS. MandaliaR. KoiralaDonglian XuR. NahnhauerCarlos ArguellesS. SchoenenJ. J. BeattyK. AbrahamL. WillsOlga BotnerS. MiareckiS. MiareckiChristopher WiebuschJ. FeintzeigD. HeeremanA. BernhardM. Lesiak-bzdakDarren GrantJuanan AguilarK. WiebeAzadeh KeivaniA. Haj IsmailJ. KirylukF. BosTeppei KatoriK. H. BeckerE. UngerD. Z. BessonF. McnallyV. BaumFrancis HalzenD. R. NygrenAya IshiharaD. RysewykSubir SarkarSubir SarkarAllan HallgrenD. V. PankovaL. ClassenJ. HaugenK. RawlinsI. AnsseauM. J. LarsonA. FranckowiakMarjon MoulaiS. YoshidaM. CasierB. RiedelJ. P. A. M. De AndréM. BissokK. JeroA. StößlA. TerliukE. JacobiM. G. AartsenS. WickmannJ. AuffenbergT. StezelbergerT. HansmannG. W. SullivanM. H. ShaevitzReina H. MaruyamaA. TurcatiR. MaunuJ. KunnenDamian PielothAli KheirandishB. EichmannH. DembinskiC. WalckJames MadsenM. S. KimJames PinfoldMichael SutherlandH.-p. BretzA. StasikN. L. StrotjohannLu LuSarah MancinaS. De RidderB. J. P. JonesM. StahlbergL. SchumacherA. SteuerD. BindigM. Van RossemGerald PrzybylskiT. FuchsY. XuM. N. TobinE. HansenM. E. HuberE. Pino Del RosendoM. BörnerKlas HultqvistZ. GriffithR. C. BayJ. C. Díaz-vélezD. BoseJ. P. DummM. RelichK. MeagherT. KargCh. WeaverL. GerhardtL. GerhardtMaryon AhrensO. KalekinK. AndeenTeresa MontaruliP. SandstromFrederik TenholtM. RameezM. ArchingerM. MediciKendall MahnFrederik Hermann LauberH. NiederhausenL. KöpkeT. PalczewskiJulian KempM. ZollG. KohnenCarsten RottG. MaggiJ. TatarJ. TatarS. WesterhoffAlbrecht KarleM. WallraffXianwu XuJ. SandroosD. AltmannP. BerghausT. AndersonB. EberhardtC. De ClercqC. Pérez De Los HerosR. StrömG. TešićT. KuwabaraKirill FilimonovD. J. KoskinenÖ. PenekS. Söldner-remboldDirk LennarzThorsten GlusenkampD. SoldinS. SchönebergZ. MárkaK. HelbingU. KatzL. RädelAlexander BurgmanHiroyuki TanakaJenni AdamsAkimichi TaketaJ. LeunerR. G. StokstadKillian HolzapfelChris WendtC.-c. FösigR. KonietzM. VehringJ. M. LoseccoJoshua HignightH. PandyaT. KintscherJavier GonzalezC. B. KraussE. WoolseyG. BinderG. BinderJoshua PepperP. B. PriceD. RyckboschMarkus AckermannN. KurahashiB. J. WhelanTodor StanevR. HellauerDawn WilliamsG. De WasseigeElisa BernardiniM. TselengidouThomas K. GaisserG. B. YodhJ. Becker TjusJ. VeenkampA. GoldschmidtTroels PetersenS. KunwarS. WrenL. SabbatiniT. RuheS. TilavJ. P. YanezT. SchmidtL. WilleS. E. Sanchez HerreraE. CheungM. UsnerV. Di LorenzoT. MenneC. FinleyA. WallaceK. ClarkD. F. CowenStijn VanheulePhilipp EllerA. SandrockJ. FeldeXinhua BaiA. Obertacke PollmannMarkus AhlersM. VraegheJ. J. EvansSamvel Ter-antonyanJay Gallaghersubject
Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmixing [neutrino]atmospheric neutrinos; IceCube Neutrino Observatory; neutrino oscillations; PINGU; Nuclear and High Energy Physicspole7. Clean energy01 natural sciencesPINGUIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - ExperimentObservatoryPhysicssolar [WIMP]precision measurementAstrophysics::Instrumentation and Methods for Astrophysicsoscillation [neutrino]solar [dark matter]atmosphere [neutrino]threshold [energy]mass difference [neutrino]atmospheric neutrinosobservatoryHigh Energy Physics - PhenomenologyUpgradeNeutrino detectorupgradeNeutrinoKM3NETperformanceParticle physicsNuclear and High Energy Physicssupernova [neutrino]particle identification [neutrino/tau]Astrophysics::High Energy Astrophysical PhenomenaSUPERNOVA DETECTIONIceCube Neutrino Observatory0103 physical sciencesOSCILLATIONSmass: low [dark matter]unitarityddc:530010306 general physicsNeutrino oscillationneutrino oscillations010308 nuclear & particles physicsAstronomysensitivityKM3NeTPhysics and Astronomymass [neutrino]beam [neutrino]High Energy Physics::ExperimentgalaxyATMOSPHERIC NEUTRINOSMATTERSYSTEMLeptonmixing angle [neutrino]experimental resultsdescription
The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octant of $\theta_{\rm 23}$ for a wide range of values, and determine the neutrino mass ordering at $3\sigma$ median significance within 4 years of operation. PINGU's high precision measurement of the rate of ${\nu_\tau}$ appearance will provide essential tests of the unitarity of the $3\times 3$ PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied. This document summarizes the results of detailed studies described in a more comprehensive document to be released soon.
year | journal | country | edition | language |
---|---|---|---|---|
2017-04-07 |