0000000000165743

AUTHOR

Justin Vandenbroucke

The design and performance of IceCube DeepCore

The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector a…

research product

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of…

research product

Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory

In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$\pi$ steradian field of view and $\sim$99\% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analys…

research product

First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory.

We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq 1.4 \times 10^{-6}$ GeV cm$^{-2}$ sec$^{-1}$ sr$^{-1}$ for neutrinos in the energy range from $3\times10^7$ to $3\times10^9$ GeV.

research product

Time-integrated Neutrino Source Searches with 10 years of IceCube Data

Physical review letters 124(5), 051103 (1-9) (2020). doi:10.1103/PhysRevLett.124.051103

research product

The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2 - 200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

research product

IceCube-Gen2: The Window to the Extreme Universe

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…

research product

EV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory

Physical review letters 125(14), 141801 (1-11) (2020). doi:10.1103/PhysRevLett.125.141801

research product

Astrophysical neutrinos and cosmic rays observed by IceCube

The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…

research product

First year performance of the IceCube neutrino telescope

The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence…

research product

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 \sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotrop…

research product

The IceCube realtime alert system

Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…

research product

Neutrino oscillation studies with IceCube-DeepCore

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make…

research product

A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…

research product

PINGU: a vision for neutrino and particle physics at the South Pole

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octan…

research product

LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories

We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.

research product

The IceCube data acquisition system: Signal capture, digitization, and timestamping

IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, func…

research product

NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE

The AMANDA neutrino telescope has been in operation at the South Pole since 1996. The present final array configuration, operational since 2000, consists of 677 photomultiplier tubes arranged in 19 strings, buried at depths between 1500 and 2000 m in the ice. The most recent results on a multi-year search for point sources of neutrinos will be shown. The study of events triggered in coincidence with the surface array SPASE and AMANDA provided a result on cosmic ray composition. Expected improvements from IceCube/IceTop will also be discussed.

research product

Measurement of acoustic attenuation in South Pole ice

Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 \pm 0.57 km^(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda = 1/alpha of ~1/300 m with 20% uncertainty. No significant depth or …

research product

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

research product

First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of $8.3\pm 3.6$. At 90% confidence we set an upper limit of $E^2\Phi_{90%CL}<3.6\times10^{-7} GeV \cdot cm^{-2} \cdot s^{-1}\cdot sr^{-1} $ on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that $\Phi \propto E^{-2}$ and that the flavor composition of the $\nu_e : \nu_\mu : \nu…

research product

A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A to…

research product

Search for sterile neutrino mixing using three years of IceCube DeepCore data

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

research product

Background studies for acoustic neutrino detection at the South Pole

The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to …

research product

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006)

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006) Weihai, China - August 15-22

research product

Design and performance of the prototype Schwarzschild-Couder telescope camera

Journal of astronomical telescopes, instruments, and systems 8(01), 014007-1 (2022). doi:10.1117/1.JATIS.8.1.014007

research product

Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\,\mathrm{TeV}$ to the $\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years o…

research product

Calibration and Characterization of the IceCube Photomultiplier Tube

Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resoluti…

research product

Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far bel…

research product

Characterization of the atmospheric muon flux in IceCube

Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric …

research product

Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II

The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-…

research product

Search for dark matter from the Galactic halo with the IceCube neutrino telescope

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22 cm3 s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

research product

The IceCube prototype string in Amanda

The Antarctic Muon And Neutrino Detector Array (Amanda) is a high-energy neutrino telescope. It is a lattice of optical modules (OM) installed in the clear ice below the South Pole Station. Each OM contains a photomultiplier tube (PMT) that detects photons of Cherenkov light generated in the ice by muons and electrons. IceCube is a cubic-kilometer-sized expansion of Amanda currently being built at the South Pole. In IceCube the PMT signals are digitized already in the optical modules and transmitted to the surface. A prototype string of 41 OMs equipped with this new all-digital technology was deployed in the Amanda array in the year 2000. In this paper we describe the technology and demonst…

research product

A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory

Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …

research product

Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II

A search for TeV - PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E^{2}\Phi_{90% C.L.} < 7.4 x 10^{-8} GeV cm^{-2} s^{-1} sr^{-1} is placed on the diffuse flux of muon neutrinos with a \Phi \propto E^{-2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive…

research product

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by oth…

research product

Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \Phi^{0}=(E/…

research product

IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae ( Corrigendum )

Keywords: neutrinos ; supernovae: general ; instrumentation: detectors ; errata ; addenda Reference EPFL-ARTICLE-198916doi:10.1051/0004-6361/201117810eView record in Web of Science Record created on 2014-05-19, modified on 2017-05-12

research product

ERRATUM: "Search for High-Energy Muon Neutrinos from the "Naked-Eye" GRB 080319B with the Icecube Neutrino Telescope" (2009, ApJ, 701, 1721)

We have noticed some mistakes in formulae (A2) and (A5) in the appendix of our paper. The errors are not present in the code used in the analysis and hence none of the plots or results is affected. The correct formulae are below.

research product

Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 -- 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

research product

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data

We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.

research product

Measurement of the AtmosphericνeSpectrum with IceCube

We present a measurement of the atmospheric $\nu_e$ spectrum at energies between 0.1 TeV and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric $\nu_e$ originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of livetime, then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional $\nu_e$ fluxes to higher energies. The data constrain the conventional $\nu_e$ flux to be $1.3^{+0.4}_{-0.3}$ times a baseline prediction from a Honda's calculation, including the knee of the cosmic-…

research product

Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …

research product

Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atm…

research product

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

research product

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon ne…

research product

Limits on a muon flux from neutralino annihilations in the sun with the IceCube 22-string detector.

A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250 - 5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

research product

Search for neutrino-induced cascades with five years of AMANDA data

Contains fulltext : 97339.pdf (Publisher’s version ) (Closed access) We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E(-2) is less than 5.0 x…

research product

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscilla…

research product

Extending the search for neutrino point sources with iceCube above the horizon

Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmosp…

research product