0000000000060441

AUTHOR

Teppei Katori

0000-0002-9429-9482

showing 40 related works from this author

Measurement of Coherent π+ Production in Low Energy Neutrino-Carbon Scattering

2016

We report the first measurement of the flux-averaged cross section for charged current coherent π+ production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The …

Physics010308 nuclear & particles physicsScatteringMonte Carlo methodDetectorGeneral Physics and Astronomy7. Clean energy01 natural sciencesNuclear physicsLow energyPhase space0103 physical sciencesHigh Energy Physics::ExperimentNeutrino010306 general physicsCharged currentEvent generatorPhysical Review Letters
researchProduct

Measurement of inclusive neutral current pi(0) production on carbon in a few-GeV neutrino beam

2010

The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 +/- 0.5(stat) +/- 0.5(sys)) X 10(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the pi(0) momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 +/- 0.4) …

PhysicsNuclear and High Energy PhysicsParticle physicsScience programLibrary scienceNeutrino beamPriority areasSynthetic materialsLoanChristian ministryHigh Energy Physics::ExperimentFermilabNuclear ExperimentPolyvinyls
researchProduct

Search for short baseline nu(e) disappearance with the T2K near detector

2015

8 pages.- 6 figures

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoAstronomy & AstrophysicsNeutrino beam7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNuclear physics0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillation0206 Quantum PhysicsNeutrino fluxPhysicsScience & Technologyhep-ex010308 nuclear & particles physicsPhysicsDetectorT2K experimentNuclear & Particles Physics0201 Astronomical And Space SciencesPhysical Sciences
researchProduct

Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

2008

The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, \nu_\mu ^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67\times 10^{-2} at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMesonHadronFOS: Physical sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionHigh Energy Physics::ExperimentFermilabNeutrinoNuclear ExperimentCharged currentLepton
researchProduct

Combined Analysis of Neutrino and Antineutrino Oscillations at T2K.

2017

T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino- and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 ×10^(20) protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 μ-like events, and 7.471 × 10^(20) protons on target in antineutrino mode, which yielded 4 e-like and 66 μ-like events. Reactor measurements of sin(2)2θ(13) have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase δCP spans the range (−3.13, −0.39) for normal mass ordering. The CP conservation hypothesis …

Particle physicsGeneral PhysicsNeutrino oscillations; CP violation; Neutrino detectors530 PhysicsPhysics MultidisciplinaryFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energy09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectors010306 general physicsNeutrino oscillationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)01 Mathematical SciencesComputingMilieux_MISCELLANEOUSQCPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicshep-exNeutrino oscillationsPhysicsCP violationNeutrino detectorantineutrino oscillationsT2K CollaborationPhysical SciencesCP violationNeutrinoPhysical review letters
researchProduct

Search for Electron Antineutrino Appearance in a Long-baseline Muon Antineutrino Beam

2020

Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40 σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and a…

muon antineutrino beamGeneral Physics and Astronomyantineutrino/mu: secondary beamKAMIOKANDEantineutrino/e: particle identification01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)secondary beam [neutrino/mu][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino/e: particle identificationQCPhysics02 Physical SciencesPhysicsJ-PARC LabT2K experimentelectron antineutrinoT2K CollaborationkinematicsPhysical SciencesParticle Physics - ExperimentT2K experiment in an accelerator-producedGeneral Physics530 PhysicsPhysics MultidisciplinaryFOS: Physical sciencesparticle identification [antineutrino/e]Neutrino beamsecondary beam [antineutrino/mu]530Physics::GeophysicsNuclear physics0103 physical sciencesmixingddc:530010306 general physics01 Mathematical SciencesMuonScience & Technologyparticle identification [neutrino/e]hep-exbackgroundHigh Energy Physics - Experiment; High Energy Physics - Experimentneutrino/mu: secondary beamantineutrino: oscillationoscillation [antineutrino]Elementary Particles and FieldsHigh Energy Physics::ExperimentPMNSElectron neutrinoBeam (structure)Free parameterexperimental results
researchProduct

IceCube-Gen2: The Window to the Extreme Universe

2020

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HENuclear and High Energy PhysicsActive galactic nucleus010308 nuclear & particles physicsHigh-energy astronomyGravitational wavemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesCosmic ray01 natural sciencesUniverseNeutron star0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsmedia_common
researchProduct

Measurement ofK+production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

2011

The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this mea…

PhysicsNuclear and High Energy PhysicsParticle physicsProtonMesonHadronNuclear physicsAntimatterHigh Energy Physics::ExperimentMuon neutrinoFermilabNeutrinoNuclear ExperimentLeptonPhysical Review D
researchProduct

Measurements of ν̅ μ and ν̅ μ + ν μ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino…

2021

Abstract We report measurements of the flux-integrated ν̅μ and ν̅μ + νμ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}>400~{\rm MeV}/c$ and $\theta_{\mu}<30^{\circ}$, in the laboratory frame. An absence of pions and protons in the …

chemistry.chemical_classificationPhysicsParticle physicsMuonProton010308 nuclear & particles physicsGeneral Physics and Astronomy01 natural sciencesHydrocarbonPionchemistry0103 physical sciences010306 general physicsNucleonEnergy (signal processing)Charged currentBar (unit)Progress of Theoretical and Experimental Physics
researchProduct

First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single- π+ production channel containing at least one pr…

2021

This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-$\pi^+$ production channel of neutrino interactions. We measure the differential cross sections in the muon-neutrino charged-current interaction on hydrocarbon with a single $\pi^+$ and at least one proton in the final state, at the ND280 off-axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models which have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.

PhysicsProtonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsMonte Carlo methodT2K experiment01 natural sciences7. Clean energyNuclear physicsTransverse plane0103 physical sciencesMuon neutrinoNeutrino010306 general physicsEvent (particle physics)Charged currentPhysical Review D
researchProduct

PINGU: a vision for neutrino and particle physics at the South Pole

2017

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octan…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmixing [neutrino]atmospheric neutrinos; IceCube Neutrino Observatory; neutrino oscillations; PINGU; Nuclear and High Energy Physicspole7. Clean energy01 natural sciencesPINGUIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - ExperimentObservatoryPhysicssolar [WIMP]precision measurementAstrophysics::Instrumentation and Methods for Astrophysicsoscillation [neutrino]solar [dark matter]atmosphere [neutrino]threshold [energy]mass difference [neutrino]atmospheric neutrinosobservatoryHigh Energy Physics - PhenomenologyUpgradeNeutrino detectorupgradeNeutrinoKM3NETperformanceParticle physicsNuclear and High Energy Physicssupernova [neutrino]particle identification [neutrino/tau]Astrophysics::High Energy Astrophysical PhenomenaSUPERNOVA DETECTIONIceCube Neutrino Observatory0103 physical sciencesOSCILLATIONSmass: low [dark matter]unitarityddc:530010306 general physicsNeutrino oscillationneutrino oscillations010308 nuclear & particles physicsAstronomysensitivityKM3NeTPhysics and Astronomymass [neutrino]beam [neutrino]High Energy Physics::ExperimentgalaxyATMOSPHERIC NEUTRINOSMATTERSYSTEMLeptonmixing angle [neutrino]experimental results
researchProduct

Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1–3 GeV with the T2K INGRID detector

2016

International audience; We report a measurement of the $\nu_{\mu}$-nucleus inclusive charged current cross section (=$\sigma^{cc}$) on iron using data from exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0$^\circ$ to 1.1$^\circ$. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be $\sigma^{cc}(1.1\text{ GeV}) = 1.10 \pm 0.15$ $(10^{-38}\text{cm}^2/\text{nucleon})$, $\sigma^{cc}(2.0\text{ GeV}) = 2.07 \pm 0.27$ $(10^{-38}\te…

COLLISIONSNuclear and High Energy PhysicsParticle physicsMULTIPLICITY DISTRIBUTIONSPhysics::Instrumentation and Detectors530 PhysicsFOS: Physical sciencesneutrino scatteringAstronomy & Astrophysics01 natural sciences7. Clean energyHigh Energy Physics - ExperimentPhysics Particles & FieldsNuclear physicsHigh Energy Physics - Experiment (hep-ex)Cross section (physics)0202 Atomic Molecular Nuclear Particle And Plasma PhysicsMONTE-CARLO0103 physical sciencesPION ABSORPTION[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsNuclear Experiment0206 Quantum PhysicsCharged currentPhysicsRange (particle radiation)Science & TechnologyNUCLEIhep-ex010308 nuclear & particles physicsPhysicsneutrinoscross sectionsNuclear & Particles Physics0201 Astronomical And Space SciencesPhysical SciencesSIMULATIONHigh Energy Physics::ExperimentNeutrinoNucleonEvent (particle physics)Energy (signal processing)
researchProduct

Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector

2011

Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity $\numu$ induced charged-current single $\pip$ (CC1$\pip$) sample while the second exploits the difference between the angular distributions of muons created in $\numu$ and $\numub$ charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1$\pip$ analysis indicates the predicted $\numu$ flux should be scaled by $0.76 \pm 0.11$, while the CCQE an…

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMesonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - Experiment (hep-ex)PionAntimatterHigh Energy Physics::ExperimentNeutrinoEnergy (signal processing)Lepton
researchProduct

NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering

2018

International audience; The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result.In this Wh…

electron nucleus: interactionNuclear TheoryElementary particle7. Clean energy01 natural sciencesCROSS-SECTIONSScatteringHigh Energy Physics - Phenomenology (hep-ph)Nuclear Experimentneutrino: interactionCOHERENT PION-PRODUCTIONPhysicsstrong interactionElectroweak interactionModel; Neutrino; Nuclear; Nucleus; Oscillations; Scattering; Nuclear and High Energy PhysicsHigh Energy Physics - PhenomenologyMUON-NEUTRINONeutrinoNucleonnumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsOscillationsFORM-FACTORSProcess (engineering)FOS: Physical sciencesELECTROMAGNETIC RESPONSEnuclear modelNucleusMESON-EXCHANGE CURRENTSNNLO QCD ANALYSISCHARGED-CURRENT INTERACTIONSnuclear physicsdeep inelastic scattering0103 physical sciencesNeutrinoNuclear010306 general physicsneutrino nucleus: scatteringresonance: modelelectroweak interaction010308 nuclear & particles physicsR=SIGMA-L/SIGMA-Tneutrino nucleus: interactionDeep inelastic scatteringPhysics and Astronomy13. Climate actionINELASTIC ELECTRON-SCATTERING[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Atomic nucleusneutrino: oscillationEvent (particle physics)Model
researchProduct

Measurement ofνμandν¯μinduced neutral current singleπ0production cross sections on mineral oil atEν∼O(1 GeV)

2010

MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.40{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.14{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 664 MeV for {nu}{sub {mu}} and {bar {nu}…

MiniBooNENuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsMesonHadronProduction (computer science)NeutrinoNucleonEnergy (signal processing)LeptonPhysical Review D
researchProduct

Measurement ofνμ-induced charged-current neutral pion production cross sections on mineral oil atEν∈0.5–2.0  GeV

2011

The authors would like to acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation in the construction, operation, and data analysis of the Mini Booster Neutrino Experiment.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMesonPhysics::Instrumentation and DetectorsNuclear physicsPionPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentFermilabNeutrinoEnergy sourceCharged currentLeptonPhysical Review D
researchProduct

Search for heavy neutrinos with the T2K near detector ND280

2019

This paper reports on the search for heavy neutrinos with masses in the range 140<MN<493  MeV/c2 using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are N→ℓ±απ∓ and N→ℓ+αℓ−β(−)ν(α,β=e,μ). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heav…

decay modes [neutrino]GENERAL-THEORYmixing [neutrino]Physics::Instrumentation and Detectorsneutrino: heavy: search forKAMIOKANDE01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsHigh Energy Physics - Experiment (hep-ex)LIMITSsecondary beam [neutrino/mu]neutrino: decay modes[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massmedia_commonPhysicsVMSMJ-PARC LabPhysicsstatistical analysis: BayesianK: decayheavy neutrinos T2K Experiment Time Projection Chambersmass dependenceGeneral theoryT2K ExperimentTime Projection ChambersPhysical SciencesChristian ministrydata analysis methodFOS: Physical sciencesLibrary scienceheavy: search for [neutrino]Astronomy & AstrophysicsBayesian [statistical analysis]530near detector0103 physical sciencesDARK-MATTERmedia_common.cataloged_instanceddc:530Early careerEuropean unionS077A00010306 general physicsS077A01heavy neutrinosScience & Technology010308 nuclear & particles physicsbackgroundhep-exHigh Energy Physics::PhenomenologyFísicaneutrino/mu: secondary beamtime projection chamberdecay [K]mass [neutrino]Hypothetical particle physics models Particle phenomenaHigh Energy Physics::Experimentneutrino: mixingstatisticalexperimental resultsPhysical Review D
researchProduct

Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5×1021 protons on target

2017

We report measurements by the T2K experiment of the parameters $\theta_{23}$ and $\Delta m^{2}_{32}$ governing the disappearance of muon neutrinos and antineutrinos in the three flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using $7.482 \times 10^{20}$ POT in neutrino running mode and $7.471 \times 10^{20}$ POT in antineutrino mode, T2K obtained, $\sin^{2}(\theta_{23})=0.51^{+0.08}_{-0.07}$ and $\Delta m^{2}_{32} = 2.53^{+0.15}_{-0.13} \times 10^{-3}$eV$^{2}$/c$^{4}$ for neutrinos, and $\sin^{2}({\overline{\theta}}_{23})=0.4…

PhysicsNuclear physicsParticle physicsMuon010308 nuclear & particles physics0103 physical sciencesT2K experimentMuon neutrinoNeutrino010306 general physicsNeutrino oscillation7. Clean energy01 natural sciencesPhysical Review D
researchProduct

Measurement of the $\nu_{\mu}$ charged current quasi-elastic cross-section on carbon with the T2K on-axis neutrino beam

2015

17 pages.- 21 figures

Particle physicsNuclear and High Energy Physicschemistry.chemical_elementPion productionAstronomy & AstrophysicsMASSNeutrino beamPION-PRODUCTION7. Clean energy01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentNuclear physicsScatteringCross section (physics)0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron010306 general physicsNeutrino oscillationNuclear Experiment0206 Quantum PhysicsCharged currentPhysicsScience & Technologyhep-ex010308 nuclear & particles physicsScatteringPhysicsDetectorNuclear & Particles PhysicsMODEL0201 Astronomical And Space ScienceschemistryPhysical SciencesHigh Energy Physics::ExperimentNeutrinoCarbonNuclear targets
researchProduct

Measurement of double-differential muon neutrino charged-current interactions onC8H8without pions in the final state using the T2K off-axis beam

2016

We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734×1020 protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross section in muon kinematic variables (cosθμ, pμ), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include n…

PhysicsParticle physicsMuon010308 nuclear & particles physicsMonte Carlo method01 natural sciences7. Clean energyNuclear physicsCross section (physics)PionPhase space0103 physical sciencesHigh Energy Physics::ExperimentMuon neutrinoNuclear Experiment010306 general physicsBeam (structure)Charged currentPhysical Review D
researchProduct

Dual baseline search for muon neutrino disappearance at0.5  eV2&lt;Δm2&lt;40  eV2

2012

The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the Δ'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

PhysicsNuclear and High Energy PhysicsParticle physicsCherenkov detectorDetectorlaw.inventionNuclear physicsMiniBooNElawMuon neutrinoFermilabNeutrinoNeutrino oscillationCharged currentPhysical Review D
researchProduct

Measurement of the inclusive $\nu_{\mu}$ charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam

2014

We report a measurement of the $\nu_\mu$ inclusive charged current cross sections on iron and hydrocarbon in the T2K on-axis neutrino beam. The measured inclusive charged current cross sections on iron and hydrocarbon averaged over the T2K on-axis flux with a mean neutrino energy of 1.51 GeV are $(1.444\pm0.002(stat.)_{-0.157}^{+0.189}(syst.))\times 10^{-38}\mathrm{cm}^2/\mathrm{nucleon}$, and $(1.379\pm0.009(stat.)_{-0.147}^{+0.178}(syst.))\times 10^{-38}\mathrm{cm}^2/\mathrm{nucleon}$, respectively, and their cross section ratio is $1.047\pm0.007(stat.)\pm0.035(syst.)$. These results agree well with the predictions of the neutrino interaction model, and thus we checked the correct treatme…

Particle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesAstronomy & Astrophysics7. Clean energy01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentNuclear physicsCross section (physics)Physics and Astronomy (all)High Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationNuclear ExperimentDETECTORCharged currentMathematical Physicschemistry.chemical_classificationPhysicsScience & Technologyhep-ex010308 nuclear & particles physicsPhysicsT2K experimentFísicaHydrocarbonchemistryPhysical SciencesHigh Energy Physics::ExperimentNuclear and High Energy Physics; Mathematical Physics; Physics and Astronomy (all)NeutrinoNucleon
researchProduct

Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline

2017

A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 1020 at the GeV scale.

Physics and Astronomy (miscellaneous)CPT symmetryAstrophysicsKAMIOKANDE01 natural scienceshigh energy physicsPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Standard-Model Extension[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: interactionPhysicssymmetry: violationPhysicsJ-PARC LabCPT symmetrysuppressionLorentz symmetryviolation: LorentzmodulationSidereal timePhysical Sciencesneutrino: flavorsymbolsNeutrinoupper limitParticle physicsdata analysis method530 PhysicsLorentz transformationFOS: Physical sciencesCPT: violationAstronomy & AstrophysicsStandard Modelsymbols.namesakenear detectorstatistical analysis0103 physical sciences010306 general physicsNeutrino oscillationneutrino oscillationsScience & Technology010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologySymmetry (physics)neutrino/mu: secondary beamcorrelationtime dependenceHigh Energy Physics::Experimentneutrino: oscillationexperimental results
researchProduct

Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses

2011

The sidereal time dependence of MiniBooNE ν[subscript e] and ν[over-bar][subscript e] appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov–Smirnov (K–S) test shows both the ν[subscript e] and ν[over-bar][subscript e] appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the ν[subscript e] appearance data prefer a sidereal time-independent solution, and the ν[over-bar][subscript e] appearance data slightly prefer a sidereal…

Particle physicsNuclear and High Energy PhysicsNeutrino oscillationPhysics::Instrumentation and DetectorsLorentz transformationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesMiniBooNEPartícules (Física nuclear)High Energy Physics - ExperimentNuclear physicsMiniBooNEsymbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Violació CP (Física nuclear)Standard-Model ExtensionStatistical analysisNeutrino oscillationPhysicsOscillationNull (mathematics)High Energy Physics::PhenomenologyLorentz violationHigh Energy Physics - PhenomenologySidereal timesymbolsHigh Energy Physics::ExperimentPhysics Letters B
researchProduct

Search for Electron Antineutrino Appearance at theΔm2∼1  eV2Scale

2009

The MiniBooNE Collaboration reports initial results from a search for nu{sub m}u->nu{sub e} oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39x10{sup 20} protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200<E{sub n}u{sup QE}<3000 MeV: 144 electronlike events have been observed in this energy range, compared to an expectation of 139.2+-17.6 events. No significant excess of events has been observed, both at low energy, 200-475 MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect to antineutrino oscillations suggested …

Nuclear physicsPhysicsNuclear reactionMiniBooNEParticle physicsLiquid Scintillator Neutrino DetectorQuasielastic scatteringGeneral Physics and AstronomyNeutrinoNuclear ExperimentNeutrino oscillationElectron neutrinoLeptonPhysical Review Letters
researchProduct

Measurement of the neutrino neutral-current elastic differential cross section on mineral oil atEν∼1  GeV

2010

We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass M{sub A} that provides a best fit for M{sub A}=1.39{+-}0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q{sup 2} …

PhysicsElastic scatteringNuclear and High Energy PhysicsParticle physicsNuclear TheoryForm factor (quantum field theory)Nuclear physicsBaryonMiniBooNENeutrinoNuclear ExperimentNucleonEnergy (signal processing)LeptonPhysical Review D
researchProduct

Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charg…

2018

This paper reports measurements of final-state proton multiplicity, muon and proton kinematics, and their correlations in charged-current pionless neutrino interactions, measured by the T2K ND280 near detector in its plastic scintillator (C$_8$H$_8$) target. The data were taken between years 2010 and 2013, corresponding to approximately 6$\times10^{20}$ protons on target. Thanks to their exploration of the proton kinematics and of kinematic imbalances between the proton and muon kinematics, the results offer a novel probe of the nuclear-medium effects most pertinent to the (sub-)GeV neutrino-nucleus interactions that are used in accelerator-based long-baseline neutrino oscillation measureme…

Fermi gasProtoninteraction: modelPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsKinematicsKAMIOKANDE7. Clean energy01 natural sciencesPhysics Particles & Fieldscharged currentHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino oscillationAXISNuclear ExperimentHigh Energy Physics - Experiment; High Energy Physics - Experiment; Physics and Astronomy (miscellaneous)Charged currentneutrino: interactionPhysicsCHALLENGESPhysicsJ-PARC Labp: final state3. Good healthtransversekinematicsPhysical SciencesNeutrinospectral representationFOS: Physical sciencesddc:500.2Astronomy & AstrophysicsREGIONNuclear physicsphase spacenear detectormuon0103 physical sciencesEXCITATIONddc:530010306 general physicsNeutrino oscillationDETECTORnuclear matter effectscintillation counterp: multiplicityMuonScience & Technology010308 nuclear & particles physicshep-exnucleusscatteringnuclear matter: effectneutrino nucleus: interactionfinal-state interactionneutrino/mu: secondary beamPhase spacecorrelationPhysics::Accelerator Physicsneutrino nucleus interactionneutrino: oscillationexperimental results
researchProduct

Measurement of theνμcharged-current quasielastic cross section on carbon with the ND280 detector at T2K

2015

We thank the J-PARC staff for superb accelerator performance and the CERN NA61 Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR, and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (…

PhysicsNuclear physicsNuclear and High Energy Physics010308 nuclear & particles physics0103 physical sciencesLibrary scienceDESYEarly career010306 general physics7. Clean energy01 natural sciencesNeutrino scatteringPhysical Review D
researchProduct

Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2×1021 Protons on Target

2018

The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of $14.7(7.6)\times 10^{20}$ protons on target in neutrino (antineutrino) mode, 89 $\nu_e$ candidates and 7 anti-$\nu_e$ candidates were observed while 67.5 and 9.0 are expected for $\delta_{CP}=0$ and normal mass ordering. The obtained $2\sigma$ confidence interval for the $CP$ violating phase, $\delta_{CP}$, does not include the $CP$-conserving cases ($\delta_{CP}=0,\pi$). The best-fit values of other parameters are $\sin^2\theta_{23} = 0.526^{+0.032}_{-0.036}$ and $\Delta m^2_{32}=2.463\pm0.065\times10^{-3} \mathrm{eV}^2/c^4$.

PhysicsParticle physics010308 nuclear & particles physicsT2K experimentGeneral Physics and Astronomy01 natural sciencesNeutrino detector0103 physical sciencesCP violationMuon neutrinoNeutrino010306 general physicsNeutrino oscillationElectron neutrinoPhysical Review Letters
researchProduct

Event Excess in the MiniBooNE Search forν¯μ→ν¯eOscillations

2010

The MiniBooNE experiment at Fermilab reports results from a search for {nu}{sub {mu}{yields}{nu}e} oscillations, using a data sample corresponding to 5.66x10{sup 20} protons on target. An excess of 20.9{+-}14.0 events is observed in the energy range 475<E{sub {nu}}{sup QE}<1250 MeV, which, when constrained by the observed {nu}{sub {mu}} events, has a probability for consistency with the background-only hypothesis of 0.5%. On the other hand, fitting for {nu}{sub {mu}{yields}{nu}e} oscillations, the best-fit point has a {chi}{sup 2} probability of 8.7%. The data are consistent with {nu}{sub {mu}{yields}{nu}e} oscillations in the 0.1 to 1.0 eV{sup 2} {Delta}m{sup 2} range and with the evidence…

Nuclear physicsMiniBooNEPhysicsParticle physicsAntiparticleAntimatterGeneral Physics and AstronomyNeutrinoNeutrino oscillationParticle identificationEnergy (signal processing)LeptonPhysical Review Letters
researchProduct

Improved measurement of neutral current coherent pi(0) production on carbon in a few-GeV neutrino beam

2010

The SciBooNE Collaboration reports a measurement of neutral current coherent pi(0) production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive pi(0) production has been improved by detecting recoil protons from resonant pi(0) production. We measure the ratio of the neutral current coherent pi(0) production to total charged current cross sections to be 1.16 +/- 0.24) x 10(-2). The ratio of charged current coherent pi(+) to neutral current coherent pi(0) production is calculated to be 0.14(-0.28)(+0.30), using our published charged current coherent pion measurement.

PhysicsNuclear and High Energy PhysicsMeson productionLoanScience programLibrary scienceHigh Energy Physics::ExperimentChristian ministryFermilabNeutrino beamPriority areasNeutrino scattering
researchProduct

Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation gamma rays

2014

We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section. It is obtained by observing nuclear deexcitation $\gamma$-rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to $3.01 \times 10^{20}$ protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the $4-30$ MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background …

Nuclear and High Energy PhysicsCherenkov detectorPhysics::Instrumentation and DetectorsC-12FOS: Physical sciencesAstronomy & Astrophysicslaw.inventionHigh Energy Physics - ExperimentPhysics Particles & FieldsNuclear physicsSUPER-KAMIOKANDE DETECTORCross section (physics)High Energy Physics - Experiment (hep-ex)lawEXCITATIONABSORPTION[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCATTERINGO-16Nuclear ExperimentPhysicsCALIBRATIONScience & TechnologyNeutral currenthep-exPhysicsGamma rayT2K experimentFísica3. Good healthPhysical SciencesNeutrinoWEAKFiducial markerBeam (structure)
researchProduct

Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE

2009

The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.

PhysicsAntiparticleParticle physicsGeneral Physics and AstronomyFOS: Physical sciencesElementary particleHigh Energy Physics - ExperimentMiniBooNEMassless particleNuclear physicsHigh Energy Physics - Experiment (hep-ex)AntimatterNeutrinoEnergy (signal processing)Lepton
researchProduct

First measurement of the charged current ν¯μ double differential cross section on a water target without pions in the final state

2020

We thank the J-PARC staff for superb accelerator performance. We thank the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), the NRC and CFI, Canada; the CEA and CNRS/IN2P3, France; the DFG, Germany; the INFN, Italy; the National Science Centre and Ministry of Science and Higher Education, Poland; the RSF (Grant No. 19-12-00325) and the Ministry of Science and Higher Education, Russia; MINECO and ERDF funds, Spain; the SNSF and SERI, Switzerland; the STFC, UK; and the DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the We…

PhysicsScattering cross-section010308 nuclear & particles physics0103 physical sciencesmedia_common.cataloged_instanceLibrary scienceChristian ministryEarly careerEuropean union010306 general physics01 natural sciencesmedia_commonPhysical Review D
researchProduct

Neutrino flux prediction at MiniBooNE

2009

The booster neutrino experiment (MiniBooNE) searches for nu(mu)->nu(e) oscillations using the O(1 GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the…

PhysicsResearch Groups and Centres\Physics\Low Temperature PhysicsNuclear and High Energy PhysicsParticle physicsMesonFaculty of Science\PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentMassless particleMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)PionPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentFermilabNeutrinoNuclear ExperimentNeutrino oscillationLeptonPhysical Review D
researchProduct

Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam

2009

The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46 x 10(20) protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2 +/- 43.4 events, corresponding to an excess of 128.8 +/- 20.4 +/- 38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu(e) and (nu) over bar (e) charged-current scattering or nu(mu) neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are obse…

PhysicsParticle physicsScatteringHadronAstrophysics (astro-ph)General Physics and AstronomyFOS: Physical sciencesAstrophysicsHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NeutrinoNucleonNeutrino oscillationEnergy (signal processing)Lepton
researchProduct

New Physics in Astrophysical Neutrino Flavor (NuFact 2016)

2016

Astrophysical neutrinos are powerful tools to study fundamental properties of particle physics. We perform a general new physics study on ultra high energy neutrino flavor content by introducing effective operators. We find that at the current limits on these operators, new physics terms cause maximal effects on the flavor content, however, the flavor content at Earth is confined to a region related to the initial flavor content.

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::LatticeHigh Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics::Experiment
researchProduct

First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector

2017

The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ∼0.8  GeV. The differential measurements are presented as a function of the muon and pion kinematics, in the restricted phase space defined by pπ+>200  MeV/c, pμ>200  MeV/c, cos(θπ+)>0.3 and cos(θμ)>0.3. The total flux integrated νμ charged current single positive pion production cross section on water in the restricted phase space is measured to be ⟨σ⟩ϕ=4.25±0.48(stat)±1.56(syst)×10-40  cm2/nucleon. The total cross section is consistent with the NEUT prediction (5.03×10-40  cm2/nucleon) and 2σ…

Particle physicssingle production [pi]Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorswaterneutrinoproduction [pi]FOS: Physical sciencesFluxKAMIOKANDE01 natural sciencesHigh Energy Physics - Experimentcharged currentNuclear physicsHigh Energy Physics - Experiment (hep-ex)phase spacePionnear detectormeasured [differential cross section]secondary beam [neutrino/mu]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrinoddc:530High Energy Physicsmeasured [total cross section]010306 general physicsNuclear Experimentneutrino nucleusCharged currentPhysicsMuon010308 nuclear & particles physicsGenerator (category theory)hep-exJ-PARC Labinteraction [neutrino nucleus]flux [neutrino]Monte Carlo [numerical calculations]3. Good healthkinematicsProduction (computer science)High Energy Physics::ExperimentNucleonParticle Physics - Experimentexperimental results
researchProduct

Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

2014

The T2K off-axis near detector, ND280, is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ~1 GeV as a function of electron momentum, electron scattering angle and four-momentum transfer of the interaction. The total flux-averaged $\nu_e$ charged current cross-section on carbon is measured to be $1.11\pm0.09~(stat)\pm0.18~(syst)\times10^{-38} cm^2/nucleon$. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is $1.23\times10^{-38} cm^2/nucleon$ and the GENIE prediction is $1.08\times10^{-38} cm^2/nucleon$…

Particle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesParticle detectorsElectronCarbon Electron scattering Electrons Neutrons Testbed7. Clean energyHigh Energy Physics - ExperimentNuclear physicsCross section (physics)Physics and Astronomy (all)High Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentCharged currentPhysicsCharged current Differential cross section Electron momentum Electron neutrino Neutrino interactions Off-axis Total cross section Total fluxFísicaGargamelleHigh Energy Physics::ExperimentNeutrinoNucleonElectron neutrinoElectron scatteringPhysical Review Letters
researchProduct

Measurement of the single π0 production rate in neutral current neutrino interactions on water

2018

The single π0 production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the POD, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the POD contained water (2.64×1020 protons-on-target) and also periods without water (3.49×1020 protons-on-target). A measurement of the neutral current single π0 production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106±41±69 signal events where the uncertainties are statistical (stat.…

PhysicsParticle physicsNeutral currentPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaDetectorFluxInteraction energy01 natural sciences7. Clean energyNuclear physicsCross section (physics)0103 physical sciencesMass spectrumHigh Energy Physics::ExperimentNeutrinoNuclear Experiment010306 general physicsNucleonPhysical Review D
researchProduct