6533b870fe1ef96bd12cfb97
RESEARCH PRODUCT
First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector
S. V. CaoE. LarkinT. ThakoreM. HartzM. YamamotoTodd D. StewartYuki FujiiC. K. JungV. GalymovT. HayashinoS. BerkmanM. J. WilkingL. ZambelliC. TouramanisK. IekiD. KarlenT. FeuselsM. SorelM. JiangAntonio EreditatoN. YershovP. M. HamiltonJ. DumarchezJ. SchwehrViktor MatveevR. A. IntontiKevin Scott McfarlandR. J. WilkesA. KnoxRobert WilsonD. ShawW. H. TokiY. PetrovD. BrailsfordD. BrailsfordTakashi KobayashiF. Di LodovicoD. DewhurstY. TakeuchiT. KajitaR. TerriP. StamoulisT. TomuraM. MezzettoE. RadicioniYu. G. KudenkoN. C. HastingsT. TsukamotoT. HasegawaS. B. BoydSteven C. JohnsonS. NakayamaD. KielczewskaM. BatkiewiczR. A. WendellS. YenP. N. RatoffH. SekiyaT. KutterVincenzo BerardiSusumu TakahashiKeigo NakamuraA. IzmaylovS. Di LuiseR. ShahG. De RosaR. A. OwenN. ChikumaM. FriendTeppei KatoriR. PoutissouP. Bartet-friburgA. KorzenevC. W. WalterL. MagalettiC. GigantiA. BlondelA. RychterS. BienstockA. DabrowskaM. A. M. RaynerL. CremonesiS. MartynenkoJ. LagodaM. Buizza AvanziniM. MiuraO. DrapierO. DrapierI. LamontG. VasseurK. IwamotoK. GiljeM. VaginsP. F. DennerF. GizzarelliJ. A. NowakE. IwaiA. P. FurmanskiT. YuanS. DolanT. LindnerM. BarbiA. LonghinD. CherdackJ. SteinmannH.a. TanakaAlexander FinchV. PaoloneA. JacobD. HansenA. HimmelR. OhtaB. JamiesonA. RedijC. PistilloZ. VallariJ. KamedaJ. KamedaT. NakadairaC. DenshamW. Y. MaJ. H. JoE. Reinherz-aronisM. HierholzerD. CoploweR. CastilloH. J. KimE. D. ZimmermanHaighS. KingK. AbeF. BayR. SaccoT. OkusawaS. Y. SuzukiC. McgrewL. KochG.d. BarrA. ShaikhievH. K. TanakaR. G. CallandM. LazosM. G. CatanesiM. YuT. RadermacherY. HayatoThomas B. CampbellK. NakayoshiP. MijakowskiW. R. KroppW. WarzychaS. TobayamaE. ScantamburloK. NakamuraC. AndreopoulosC. AndreopoulosJ.-s. KimJ. YooY. FukudaKendall MahnJ. M. PoutissouC. BronnerR.p. KurjataK. WakamatsuA. C. KabothE. RondioN. MccauleyC. M. NantaisN. D. PatelR. L. HelmerYusuke SudaF. HosomiH. KakunoT. YanoS. DytmanJ. R. WilsonC. NielsenI. KarpikovT. DealtryGareth J. BarkerS. HorikawaT. WachalaJ. MarteauD. FukudaK. HuangMichal DziewieckiP. PrzewlockiP. LasorakS. ShortF. SanchezA. MissertJ. P. LopezKatsumi KondoK. E. DuffyD. SgalabernaSeiko HirotaT. KikawaM. GoninM. NirkkoJ. ImberAnatoly KopylovLester D.r. ThompsonJ. P. ColemanT. OvsyannikovaS. MurphyG.a. FiorentiniA. KonakaT. KogaS. R. DennisA. BravarA. N. KhotjantsevK. OkumuraXianguo LuF. ShakerS. L. CartwrightP. NovellaW. OryszczakT. IshiiMasashi YokoyamaA. MefodievYusuke KoshioAndré RubbiaS. BolognesiM. PavinT. SekiguchiA. HillairetA. ZalewskaM. B. SmyM. MccarthyC. YanagisawaA. K. IchikawaS. RothV. PalladinoXiao-yan LiD. TerhorstP. MartinsJ. . ZmudaE. S. Pinzon GuerraTh. A. MuellerD. PayneKen SakashitaA. KnightTsuyoshi NakayaA. CliftonM. RavonelS. Emery-schrenkL. L. KormosM. ShiozawaM. AntonovaM. M. KhabibullinAntonin VacheretM. IkedaH. M. O'keeffeT. MaruyamaL. LudoviciM. TzanovKazuhiro SuzukiJ. KisielM. TadaP. JonssonR. TacikC. J. MetelkoM. O. WasckoS. BhadraE. KearnsStefan SchoppmannY. NishimuraS. BanG. ChristodoulouK. NakamuraKenichi YoshidaL. PickeringK. NishikawaS. MoriyamaD. R. HadleyT. IshidaC. RiccioMasayuki NakahataY. UchidaYoshihiro SuzukiD. L. WarkT. HaraJan T. SobczykA. D. MarinoP. RojasK. MavrokoridisJ. D. PerkinC. A. MillerA. MinaminoZ. J. LiptakOleg MineevM. MalekM. ZiembickiJ. ZalipskaJ. InslerY. OyamaAkitaka ArigaShigeki AokiL. PickardS. GiffinP. StowellM. ZitoS. MineB. A. PopovKate ScholbergA. C. WeberN. GrantA. GarciaG. CollazuolMark ScottE. MazzucatoYoshikazu YamadaA. CerveraM. KabirnezhadF. SatoS. SuvorovR. P. LitchfieldS. AssylbekovKoji YamamotoJ. HoleczekS. M. OserY. SeiyaM. Posiadala-zezulaLeïla HaegelK. ZarembaAtsushi TakedaS. ManlyC. WilkinsonA. T. SuzukiJ. F. MartinD. AutieroT. ShirahigeT. LouM. LaweJ. HaradaJ. Caravaca RodríguezJ. L. PalominoH. W. SobelB. QuilainMarco LavederS. BordoniT. J. IrvineM. HoganL. SouthwellJ. MyslikTakahiro Hirakisubject
Particle physicssingle production [pi]Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorswaterneutrinoproduction [pi]FOS: Physical sciencesFluxKAMIOKANDE01 natural sciencesHigh Energy Physics - Experimentcharged currentNuclear physicsHigh Energy Physics - Experiment (hep-ex)phase spacePionnear detectormeasured [differential cross section]secondary beam [neutrino/mu]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrinoddc:530High Energy Physicsmeasured [total cross section]010306 general physicsNuclear Experimentneutrino nucleusCharged currentPhysicsMuon010308 nuclear & particles physicsGenerator (category theory)hep-exJ-PARC Labinteraction [neutrino nucleus]flux [neutrino]Monte Carlo [numerical calculations]3. Good healthkinematicsProduction (computer science)High Energy Physics::ExperimentNucleonParticle Physics - Experimentexperimental resultsdescription
The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ∼0.8 GeV. The differential measurements are presented as a function of the muon and pion kinematics, in the restricted phase space defined by pπ+>200 MeV/c, pμ>200 MeV/c, cos(θπ+)>0.3 and cos(θμ)>0.3. The total flux integrated νμ charged current single positive pion production cross section on water in the restricted phase space is measured to be ⟨σ⟩ϕ=4.25±0.48(stat)±1.56(syst)×10-40 cm2/nucleon. The total cross section is consistent with the NEUT prediction (5.03×10-40 cm2/nucleon) and 2σ lower than the GENIE prediction (7.68×10-40 cm2/nucleon). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but overestimates the overall cross section normalization. The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\pi^+}>200$MeV/c, $p_{\mu^-}>200$MeV/c, $\cos \theta_{\pi^+}>0.3$ and $\cos \theta_{\mu^-}>0.3$. The total flux integrated $\nu_\mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$) and 2$\sigma$ lower than the GENIE prediction ($7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-26 |