0000000000141733

AUTHOR

Dariusz Gora

showing 56 related works from this author

Measurement of the cosmic ray energy spectrum with IceTop-73

2013

Physical review / D 88(4), 042004 (2013). doi:10.1103/PhysRevD.88.042004

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsFOS: Physical sciencesAstronomyCosmic rayddc:500.2Astrophysics53001 natural sciencesPower lawICECUBEIceCubeIceCube Neutrino ObservatoryAir showerPhysics and AstronomyObservatory0103 physical sciencesEnergy spectrumARRAYddc:530Astrophysics - High Energy Astrophysical Phenomena010306 general physicsphysics
researchProduct

Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory

2021

The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the groun…

showers: energylongitudinal [showers]interaction: modelPhysics::Instrumentation and DetectorsAstronomyCalibration and fitting methods; Cluster finding; Data analysis; Large detector systems for particle and astroparticle physics; Particle identification methods; Pattern recognition01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Particle identification methodscluster findingsurface [detector]ObservatoryLarge detector systemsInstrumentationMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsPattern recognition cluster finding calibration and fitting methodsPhysicsSettore FIS/01 - Fisica Sperimentalemodel [interaction]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsData analysicalibration and fitting methodsenergy [showers]AugerobservatoryPattern recognition cluster finding calibration and fitting methodastroparticle physicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airneural networkAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Data analysisFOS: Physical sciences610Cosmic raydetector: fluorescencePattern recognition0103 physical sciencesddc:530High Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic radiation: UHEstructureparticle physicsnetwork: performance010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Ciencias ExactasCherenkov radiationfluorescence [detector]Pierre Auger ObservatoryCalibration and fitting methodsmass spectrum [nucleus]showers: atmospheredetector: surfacehep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsCluster findingFísicaresolutioncalibrationComputational physicsperformance [network]Cherenkov counterAir showerLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::Experimentnucleus: mass spectrumshowers: longitudinalRAIOS CÓSMICOSEnergy (signal processing)astro-ph.IM
researchProduct

Search for relativistic magnetic monopoles with IceCube

2012

We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits$ for $\beta\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass …

FLUXSELECTIONAMANDANuclear and High Energy PhysicsParticle physicsProton decayCherenkov detectorPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleFOS: Physical sciencesddc:500.201 natural scienceslaw.inventionIceCube Neutrino ObservatoryPhysics::GeophysicsIceCubelaw0103 physical sciencesGrand Unified Theoryddc:530NEUTRINO TELESCOPE010306 general physicsCherenkov radiationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsFIELDS85-05Physics and AstronomyNeutrino detectorAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The design and performance of IceCube DeepCore

2011

The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector a…

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAntarticaGeneratorAstrophysicsNeutrino telescope01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryAntarctica; DeepCore; Detector; IceCube; NeutrinoIceCubeHigh Energy Physics - Experiment (hep-ex)WIMP0103 physical sciencesNeutrino010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsMuon010308 nuclear & particles physicsIceICEAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsDetectorInstrumentation and Detectors (physics.ins-det)GENERATORDeepCoreSupernovaAir showerPhysics and AstronomyNeutrino detector13. Climate actionddc:540AntarcticaHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory

2010

We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstronomyAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumFluxFOS: Physical sciencesCosmic rayAstrophysicsElectronSURFACE DETECTORUPPER LIMITENERGIAPHOTON FRACTION01 natural sciencesSpectral lineAugerNuclear physicscosmic raysObservatorySHOWERS0103 physical sciencesHigh-Energy Cosmic Ray010306 general physicsCosmic raysCiencias ExactasPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Spectral densityFísicaPierre Auger ObservatoryCosmic rayELECTRONS3. Good healthPierre Auger Observatory; Cosmic rays; Energy spectrumSIMULATIONExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaARRAYFísica nuclearEnergy spectrumAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube

2012

Astroparticle physics 42, 15 - 32 (2013). doi:10.1016/j.astropartphys.2012.11.003

Knee regionAstrophysicsTracking (particle physics)01 natural sciencesParticle identificationIceCubeTRACKINGWATERCherenkovNeutrino energyNEUTRINO TELESCOPEUltra-high-energy cosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSEADetectorAstrophysics::Instrumentation and Methods for AstrophysicsLIGHTComposition; Cosmic rays; Energy spectrum; IceCube; IceTop; Knee regionddc:540IceTopPARTICLE IDENTIFICATIONAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsIceCube detectorCompositionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2IceCube Neutrino ObservatorySEARCHESAccelerationcosmic raysdE/dx0103 physical sciences010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationTruncated meanMuon energy010308 nuclear & particles physicsAstronomyAstronomy and Astrophysics540Physics and AstronomycompositionEnergy SpectrumTEVEnergy spectrum
researchProduct

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

2014

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 \sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotrop…

FLUXACTIVE GALACTIC NUCLEICosmology and Nongalactic Astrophysics (astro-ph.CO)TELESCOPESolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyIceCubeIceCube Neutrino ObservatoryHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesddc:550010303 astronomy & astrophysicsGAMMA-RAY BURSTSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGlashow resonanceHigh Energy Physics::PhenomenologyASTRONOMYAstronomySolar neutrino problemBLAZARSPhysics and AstronomyNeutrino detector13. Climate actionLEPTONSJETSMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyEMISSIONAstrophysics - High Energy Astrophysical PhenomenaphysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

First Observation of PeV-Energy Neutrinos with IceCube

2013

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. T…

SELECTIONParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayddc:500.201 natural sciencesCHARMIceCube Neutrino Observatory0103 physical sciencesddc:550SCATTERING010303 astronomy & astrophysicsCharged currentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyICEGlashow resonancePERFORMANCE3. Good healthPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsBar (unit)
researchProduct

Neutrino oscillation studies with IceCube-DeepCore

2016

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make…

Physics::Instrumentation and DetectorsSolar neutrinopoleinteraction [neutrino nucleon]PINGU01 natural sciences7. Clean energyneutrino nucleon: interactionIceCubeenergy: thresholdAstronomi astrofysik och kosmologineutrino: atmosphereAstronomy Astrophysics and Cosmologydetector [neutrino]Physicsneutrino: energy spectrumoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]Cosmic neutrino backgroundneutrino: detectorNeutrino detectorPhysique des particules élémentairesMeasurements of neutrino speedNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceddc:500.2530neutrino: energySOUTH-POLE0103 physical sciencesddc:530010306 general physicsNeutrino oscillation010308 nuclear & particles physicsICEenergy spectrum [neutrino]Solar neutrino problemneutrino: mixing anglePhysics and Astronomyenergy [neutrino]High Energy Physics::Experimentneutrino: oscillationNeutrino astronomyMATTERSYSTEMmixing angle [neutrino]experimental results
researchProduct

Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina -Comision Nacional de Energia Atomica; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia -the Australian Research Council; Braz…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomyPerformance of High Energy Physics Detector01 natural sciences7. Clean energyEtc)030218 nuclear medicine & medical imaging0302 clinical medicineFront-end electronics for detector readoutAPDsInstrumentationphysics.ins-detPhoton detectors for UVMathematical PhysicsInstrumentation et méthodes en physiqueEBCCDsVisible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)electronicsSettore FIS/01 - Fisica SperimentaleCalibration and fitting methods; Performance of High Energy Physics Detectors; Photon detectors for UVPhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsInstrumentation and Detectors (physics.ins-det)charged particleAPDs; Calibration and fitting methods; Performance of High Energy Physics Detectors; Photon detectors for UV; CCDs; Cluster finding; CMOS imagers; EBCCDs; EMCCDs; Etc); Front-end electronics for detector readout; Pattern recognition; G-APDs; Si-PMTs; Visible and IR photons (solid-state) (PIN diodesAugerobservatorydensity [muon]Pattern recognition cluster finding calibration and fitting methodG-APDsChristian ministryupgradeddc:620Astrophysics - Instrumentation and Methods for Astrophysicsperformanceatmosphere [showers]Land accessCherenkov counter: waterairAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesVisible and IR photons (solid-state) (PIN diodes03 medical and health sciencesPolitical sciencePattern recognition0103 physical sciencesmuon: densityFront-end electronics for detector readout; Pattern recognitionphotomultiplier: siliconHigh Energy Physicscosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610CMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Engineering & allied operationsscintillation counterCalibration and fitting methodsshowers: atmosphere010308 nuclear & particles physicswater [Cherenkov counter]Cluster findingAutres mathématiquesCCDsEMCCDsResearch councilefficiencyExperimental High Energy Physicssilicon [photomultiplier]Performance of High Energy Physics DetectorsHigh Energy Physics::ExperimentHumanitiesRAIOS CÓSMICOSastro-ph.IM
researchProduct

A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory

2020

The time and location of the 1,598 verified and reconstructed elves, used for the analysis showcased in this paper, are publicly available on the website of the Pierre Auger Observatory (https://www.auger.org/ index.php/science/data). We wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. We acknowledge Robert Marshall for providing one of the most advanced elve simulations to the public, a key tool in understanding the elves observed by the Pierre Auger Observatory. The successful installation, commissioning, and operation of the Pierre Auger Ob…

010504 meteorology & atmospheric sciencesAstronomyField of view010502 geochemistry & geophysics01 natural sciences7. Clean energyAugerlcsh:QB1-991ObservatoryultravioletStormddc:550UHE Cosmic Raystime resolutionCosmic-ray observatoryPhysicslcsh:QE1-996.5astro-ph.GeologyAugerwidth [beam]IonosphereField of viewGeologylcsh:AstronomyUHE [cosmic radiation]Environmental Science (miscellaneous)horizonLightningddc:530High Energy PhysicsIonosphereCosmic-ray observatory0105 earth and related environmental sciencesfluorescence [detector]backgroundFísicaAstronomyStormsensitivityLightningopticslcsh:GeologyElves UV fluorescence detectorsThunderstorm13. Climate actionExperimental High Energy PhysicsnetworkThunderstormGeneral Earth and Planetary SciencesElvesObservatory
researchProduct

Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

2013

We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% …

FLUXSELECTIONFERMI-LATNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonRadio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLIMIT01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle showerObservatory0103 physical sciencesddc:530010306 general physicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMRange (particle radiation)COSMOGENIC NEUTRINOS010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyPERFORMANCECOMPONENTMODELPhysics and Astronomy13. Climate actionIntergalactic travelHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

2011

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerUltra-high Energy Cosmic RayMonte Carlo methodFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSTrigger performance01 natural sciences7. Clean energyUltra-high Energy Cosmic Rays; Pierre Auger Observatory; Extensive air showers; Trigger performance; Surface detector; Hybrid detectorHigh Energy Physics - ExperimentAugerNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsCiencias ExactasZenithCherenkov radiationUltra-High Energy Cosmic RaysPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysicsHybrid detector[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Surface detectorAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high Energy Cosmic Rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearExtensive Air ShowersAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector

2011

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A to…

SELECTIONAMANDANuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesAmandaIceCube Neutrino ObservatoryHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesddc:530Selection010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsICEIceHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsCosmic-RaysSolar neutrino problemCOSMIC-RAYS004MODELPhysics and AstronomyNeutrino detectorTELESCOPESHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomenainfo:eu-repo/classification/ddc/004ModelTelescopesLepton
researchProduct

An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts

2012

Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

Physics::Instrumentation and DetectorsAstronomyAstrophysics::High Energy Astrophysical PhenomenaElectronvoltFOS: Physical sciencesFluxhigh-energy neutrinosCosmic rayddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesddc:070IcecubeAccelerationPioncosmic rays0103 physical sciencesTelescope010303 astronomy & astrophysicsVery EnergeticHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFluxMultidisciplinary010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySearchAstrophysics::Instrumentation and Methods for Astrophysics13. Climate actionGamma Ray BurstsHigh Energy Physics::ExperimentNeutrinoGamma-ray burstAstrophysics - High Energy Astrophysical PhenomenaNATURE
researchProduct

Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory

2009

Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming ντ may interact in the Earth's crust and produce a τ lepton by means of charged-current interactions. The τ lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by τ decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is de…

ACTIVE GALACTIC NUCLEIASTROPHYSICS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsActive galactic nucleusPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayPROPAGATIONAstrophysics7. Clean energy01 natural sciencesLeptonSpectral lineSettore FIS/04 - Fisica Nucleare e SubnucleareAugerSEARCHTau neutrino0103 physical sciencesTau neutrinoOSCILLATIONS010306 general physicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSPierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaultrahigh energy cosmic rays ; tau neutrinos ; Pierre Auger ObservatoryDiffuse fluxPierre Auger ObservatoryPERFORMANCECOSMIC-RAYScosmic radiation13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonPhysical Review D
researchProduct

Measurement of the Proton-Air Cross Section ats=57  TeVwith the Pierre Auger Observatory

2012

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 +/- 22(stat)(-36)(+28)(syst)] mb is found.

Pierre Auger ObservatoryPhysicsProton010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronAstrophysics::Instrumentation and Methods for AstrophysicsGeneral Physics and Astronomy01 natural scienceslaw.inventionAugerNuclear physicsCross section (physics)law0103 physical sciencesHigh Energy Physics::ExperimentFermilabNuclear Experiment010306 general physicsNucleonColliderPhysical Review Letters
researchProduct

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

2013

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from …

Nuclear and High Energy PhysicsTELESCOPEPoint sourcePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsddc:500.201 natural sciences7. Clean energyIceCube Neutrino ObservatoryIceCubeHESS0103 physical sciencesddc:530MILAGRO010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsPLANEGalactic planeAir showerPhysics and Astronomy13. Climate actionDISCOVERYMilagroMOLECULAR CLOUDSTEVRADIATIONHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEMISSION
researchProduct

Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

2015

Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\,\mathrm{TeV}$ to the $\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years o…

J.2Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScale (descriptive set theory)AstrophysicsIceCubelaw.inventionTelescopelawPoint (geometry)Anisotropyastro-ph.HE2pt-correlationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh Energy Physics::Phenomenology2pt-correlation; Astrophysical neutrinos; Extraterrestrial neutrinos; IceCube; Multipole analysis; Point sourcesAstrophysics::Instrumentation and Methods for AstrophysicsPoint sourcesAstronomyAstronomy and AstrophysicsMultipole analysis3. Good health85-05Astrophysical neutrinosddc:540Extraterrestrial neutrinosHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaMultipole expansionGamma-ray burstAstroparticle Physics
researchProduct

The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory

2021

FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operati…

AstronomyLarge detector systems for particle and astroparticle physics; Optics; Photon detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc); Real-time monitoringReal-time monitoring01 natural sciencesAugerSuccessful operationObservatoryopticalAPDshardwareAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsInstrumentationPhoton detectors for UVMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEEBCCDsSettore FIS/01 - Fisica SperimentalePhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsAugerobservatoryRobotic telescopeG-APDsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSciences exactes et naturellesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesprogrammingdetector: fluorescencePhotometry (optics)0103 physical sciencesddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physicsvisible and IR photons (solid-state) (PIN diodesCMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsRemote sensingetc)fluorescence [detector]Pierre Auger Observatory010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsActive monitoringOpticsCCDslasermonitoringEMCCDsLarge detector systems for particle and astroparticle physicatmosphereExperimental High Energy PhysicsOpticEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

The IceProd framework: distributed data processing for the IceCube neutrino observatory

2015

IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed description of IceProd, a lightweight distributed management system designed to meet these requirements. It is driven by a central database in order to manage mass production of simulations and analysis of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of c…

FOS: Computer and information sciencesMonitoringComputer scienceComputer Networks and CommunicationsDistributed computingData managementReal-time computingDistributed managementcomputer.software_genre01 natural sciencesData managementIceCube Neutrino ObservatoryTheoretical Computer ScienceIceCubeArtificial Intelligence0103 physical sciences010306 general physicsData processingData management; Distributed computing; Grid computing; Monitoring010308 nuclear & particles physicsbusiness.industryDistributed computingGrid computingComputer Science - Distributed Parallel and Cluster ComputingHardware and ArchitectureMiddleware (distributed applications)MiddlewareGrid computingParticleDistributed Parallel and Cluster Computing (cs.DC)Neutrinoddc:004businesscomputerSoftware
researchProduct

Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

2020

Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60 using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.

Physics::Instrumentation and DetectorsAstronomyprimary [cosmic radiation]01 natural sciences030218 nuclear medicine & medical imagingAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinesurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Data Processing; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of High Energy Physics DetectorsInstrumentationMathematical PhysicsData Processing; Large detector systems for particle and astroparticle physics; Largedetector-systems performance; Performance of High Energy Physics DetectorsLarge detector-systems performanceHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEInstrumentation et méthodes en physiqueData ProcessingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugercascadeobservatoryCascadeLargedetector-systems performanceddc:620Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airAstrophysics::High Energy Astrophysical PhenomenawaterFOS: Physical sciencesCosmic rayAtmosphere03 medical and health sciencesOptics0103 physical sciencesHigh Energy Physics14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithEngineering & allied operationsPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryhep-exdetector: surfaceLarge detector systems for particle and astroparticle physicsAutres mathématiquescosmic radiation: primaryCherenkov counterExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentPerformance of High Energy Physics Detectorsbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009

2017

Astronomy and astrophysics 603, A31 (2017). doi:10.1051/0004-6361/201629540

extragalactic background lightmultiwavelength observationsAstrophysics::High Energy Astrophysical Phenomenabl-lacertae objectsGalaxies: BL Lacertae objects: individual: Markarian 501 ; Methods: data analysis ; observational ; Polarizationspectral energy-distributionFluxFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionindividual: Markarian 501 [BL Lacertae objects]lawCoincident0103 physical sciencesddc:530MAGIC (telescope)crab-nebulaBlazardata analysis [Methods]010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)tev blazars010308 nuclear & particles physicsstochastic accelerationtelescope observationsInstitut für Physik und AstronomieAstronomy and AstrophysicsAstronomy and Astrophysicgamma-ray emissionmethods: data analysis520BL Lacertae objects: individual: Markarian 501; Methods: data analysisSynchrotrondata analysi [Methods]BL Lacertae objects: individual: Markarian 501; Methods: data analysis; Astronomy and Astrophysics; Space and Planetary ScienceBL Lacertae objects: individual: Markarian 501x-raySpace and Planetary Scienceddc:520ElectrónicaFísica nuclearElectricidadDegeneracy (mathematics)Astrophysics - High Energy Astrophysical PhenomenaFlareBL Lac object
researchProduct

Observation of the cosmic-ray shadow of the Moon with IceCube

2013

We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector config…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesNEUTRINO TELESCOPESPosition (vector)SEARCH0103 physical sciencesShadowAngular resolutionddc:530ARRIVAL DIRECTIONS010303 astronomy & astrophysicsDETECTORAnalysis methodHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsANISOTROPY010308 nuclear & particles physicsDetectorSUNAstronomyANGULAR RESOLUTIONEarth's magnetic fieldDeflection (physics)Physics and AstronomyAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

2015

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far bel…

HIGH-ENERGY NEUTRINOSNuclear and High Energy PhysicsParticle physicsAMANDAMesonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESFOS: Physical sciencesCosmic rayAstrophysicsFLUX PREDICTIONS01 natural sciencesIceCube Neutrino ObservatoryIceCubeObservatorySEARCH0103 physical sciencesddc:530Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPERFORMANCEBLAZARSPROMPT LEPTONSGAMMA-RAYPhysics and AstronomyHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsPhysical Review D
researchProduct

Characterization of the atmospheric muon flux in IceCube

2015

Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric …

Prompt leptonsleptonAtmospheric muons; Cosmic rays; Prompt leptons; Astronomy and AstrophysicsPhysics::Instrumentation and DetectorsHadronAtmospheric muonsprimary [cosmic radiation]PROTON01 natural sciencesIceCubesurface [detector]atmosphere [muon]NEUTRINO TELESCOPEproduction [muon]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)ELEMENTAL GROUPSDetectormodel [interaction]Astrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAY MUONSENERGY-SPECTRUMvector mesonstatisticsINTRINSIC CHARMddc:540Physique des particules élémentaireshigh [energy]Astrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]Atmosperic muonsexceptionalairflux [muon]Astrophysics::High Energy Astrophysical Phenomenaspectrum [multiplicity]energy spectrumFOS: Physical sciencesCosmic rayatmosphere [cosmic radiation]Nuclear physicscosmic rays0103 physical sciencesARRIVAL DIRECTIONSVector meson010306 general physicsCosmic raysZenithANISOTROPYMuon010308 nuclear & particles physicsAstronomy and AstrophysicsSpectral componenttracksMODELPhysics and Astronomy13. Climate actionTEVspectralHigh Energy Physics::ExperimenthadronLepton
researchProduct

Search for neutrino-induced particle showers with IceCube-40

2013

We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of…

SELECTIONAMANDANuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayCASCADESSCATTERINGddc:530High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMMuonICEHigh Energy Physics::PhenomenologySolar neutrino problemMODELPhysics and AstronomyNeutrino detector13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)SYSTEM
researchProduct

First Multi-wavelength Campaign on the Gamma-ray-loud Active Galaxy IC 310

2017

The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. We report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10 deg - 20 deg. The multi-instrument campaign was conducted between 2012 Nov. and 2013 Jan., and involved observations with MAG…

Active galactic nucleusAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEnergy fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxies: active; Galaxies: individual: IC 310; Gamma rays: galaxies; Astronomy and Astrophysics; Space and Planetary Science01 natural scienceslaw.inventionlawGalaxies: individual: IC 3100103 physical sciencesindividual: IC 310 [galaxies]Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsgalaxie [Gamma rays]010308 nuclear & particles physicsGamma rayAstronomy and AstrophysicsGalaxies: activeAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesSynchrotrongamma rays: galaxies ; galaxies: active ; individual (IC 310)Gamma rays: galaxiesSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)active [galaxies]galaxies [gamma rays]ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGSpectral energy distributionddc:520Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeFlare
researchProduct

Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina-Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia-the Australian Research Council; Brazil…

interaction: modelPhysics::Instrumentation and DetectorsAstronomyHadronGeneral Physics and AstronomyUltra-high energy cosmic rays muons properties hadronic models01 natural sciencescosmic ray; particle interaction; astroparticle detectorsAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ironsurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]cosmic rayPhysics4. EducationPhysicsSettore FIS/01 - Fisica Sperimentalemeasured [fluctuation]model [interaction]Astrophysics::Instrumentation and Methods for Astrophysicsmodel: hadronicfluctuation: measured3. Good healthAugerobservatoryparticle interactionSciences exactes et naturellesatmosphere [showers]model [particle]airCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raydetector: fluorescenceNuclear physicsastroparticle detectorscosmic raysmuon0103 physical sciencescalorimeterddc:53014. Life underwatercosmic radiation: UHEHigh Energy Physicsdistribution functionelectromagnetic component010306 general physicsAstrophysiquePierre Auger Observatoryfluorescence [detector]Muonshowers: atmospherehep-exdetector: surfacewater [Cherenkov counter]particle: modelSmall deviationsFísicaASTROFÍSICAAir showerExperimental High Energy PhysicsElementary Particles and Fieldshadronic [model]High Energy Physics::Experiment
researchProduct

All-particle cosmic ray energy spectrum measured with 26 IceTop stations

2012

Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatory0103 physical sciencesCosmic rays010303 astronomy & astrophysicsZenithPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cosmic rays; Energy spectrum; IceCube; IceTopSpectral indexCOSMIC cancer database010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysics540Air showerKASCADEddc:540IceTopEnergy spectrumNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of the Atmospheric ve flux in IceCube

2012

We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 $\pm$ 66(stat.) $\pm$ 88(syst.) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muo…

DEEPCOREParticle physicsAMANDAPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and Astronomyddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsSEARCH0103 physical sciencesddc:550010306 general physicsNeutrino oscillationDETECTORPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemCosmic neutrino backgroundNeutrino detectorPhysics and Astronomy13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoNEUTRINO-INDUCED CASCADESAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae ( Corrigendum )

2014

Keywords: neutrinos ; supernovae: general ; instrumentation: detectors ; errata ; addenda Reference EPFL-ARTICLE-198916doi:10.1051/0004-6361/201117810eView record in Web of Science Record created on 2014-05-19, modified on 2017-05-12

PhysicsSupernovaLow energyWeb of scienceSpace and Planetary Scienceddc:520Astronomy and AstrophysicsAstrophysicsInstrumentation (computer programming)Sensitivity (control systems)Neutrino
researchProduct

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data

2011

We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesCosmic rayRaysAstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Spectrumddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsSPECTRUMCOSMIC cancer databaseRAYS004Massless particleNeutrino detectorPhysics and AstronomyNeutrinoAstrophysics - Instrumentation and Methods for Astrophysicsinfo:eu-repo/classification/ddc/004Astrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Observation of the suppression of the flux of cosmic rays above 4x10^19eV

2008

The energy spectrum of cosmic rays above 2.5 × 10¹⁸ eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index γ of the particle flux, J ∝ E-γ, at energies between 4 × 10¹⁸ eV and 4 × 10¹⁹ eV is 2.69 ± 0.02(stat) ± 0.06(syst), steepening to 4.2 ± 0.4(stat) ± 0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical Phenomenaenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxOsservatorio Pierre Augerspectral indexCosmic rayparticle fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEXTENSIVE AIR-SHOWERSAstrophysicsUPPER LIMIT01 natural sciencesPower lawAugerNuclear physicsENERGY[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmicicosmic rays0103 physical sciencesddc:550Particle flux010303 astronomy & astrophysicsCiencias ExactasPhysicsPierre Auger ObservatorySpectral indexSPECTRUM[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaARRAYHigh Energy Physics::ExperimentSciami atmosferici estesiEnergy (signal processing)
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Be…

Physics and Astronomy (miscellaneous)AstronomyAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesFluxCosmic rayAstrophysics7. Clean energy01 natural sciencesdetector: fluorescenceAugercosmic rayssurface [detector]Observatory0103 physical sciencescalorimeterddc:530High Energy Physicscosmic radiation: UHEspectrum [cosmic radiation]010303 astronomy & astrophysicsEngineering (miscellaneous)Engineering & allied operationsHigh Energy Astrophysical Phenomena (astro-ph.HE)fluorescence [detector]Pierre Auger ObservatoryPhysicsastro-ph.HEcosmic radiation: energy spectrumcosmic radiation: spectrumdetector: surface010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugerCalorimeterfluxobservatoryspectralddc:620[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomenaenergy spectrum [cosmic radiation]Energy (signal processing)RAIOS CÓSMICOSultra-high energy cosmic rays energy spectrum features.
researchProduct

Measurement of Atmospheric Neutrino Oscillations with IceCube

2013

We present the first statistically significant detection of neutrino oscillations in the high-energy regime ($>$ 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010-2011. This measurement is made possible by the low energy threshold of the DeepCore detector ($\sim 20$ GeV) and benefits from the use of the IceCube detector as a veto against cosmic ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20 -- 100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV -- 10 TeV) was extracted from IceCube data to constrain systematic uncertainties. Disappearance of low-energy upw…

Particle physicsTELESCOPEPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and Astronomyddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCubeIceCube Neutrino ObservatoryHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesddc:550Muon neutrino010306 general physicsNeutrino oscillationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPERFORMANCESolar neutrino problem3. Good healthPhysics and AstronomyNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

2021

The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…

PhotonPhysics::Instrumentation and DetectorsAstronomyElectron01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)mass [cosmic radiation]surface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: cosmic radiationInstrumentationMathematical PhysicsPhysicsAGASAPhysicsSettore FIS/01 - Fisica SperimentaleDetectorcosmic radiation [photon]Astrophysics::Instrumentation and Methods for AstrophysicsMonte Carlo [numerical calculations]electromagnetic [showers]Augerobservatorycosmic radiation [electron]Analysis and statistical methodsnumerical calculations: Monte CarloAnalysis and statistical methodperformancepositron: cosmic radiationatmosphere [showers]Cherenkov detectordata analysis methodAnalysis and statistical methods; Calibration and fitting methods; Cherenkov detectors; Cluster finding; Large detector systems for particle and astroparticle physics; Pattern recognitionCherenkov counter: waterairneural networkAstrophysics::High Energy Astrophysical Phenomena610FOS: Physical sciencesCosmic raycosmic radiation [positron]cosmic radiation: massCalibration and fitting methodNuclear physicsstatistical analysisPattern recognition0103 physical sciencesshowers: electromagneticddc:530ddc:610High Energy Physics010306 general physicsZenithPierre Auger ObservatoryCalibration and fitting methodscosmic radiation [muon]Muonshowers: atmosphere010308 nuclear & particles physicsdetector: surfacehep-exLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]Cherenkov detectorsCluster findingelectron: cosmic radiationRecurrent neural networkmuon: cosmic radiationLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::ExperimentRAIOS CÓSMICOSexperimental results
researchProduct

Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

2011

A search for an excess of muon-neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of livetime between 2001 and 2006 and 149 days of livetime collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total livetime of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding …

Nuclear and High Energy PhysicsParticle physicsLimitsAstrophysics::High Energy Astrophysical PhenomenaDark matterCaptureFOS: Physical sciencesAstrophysicsSouth-Poleddc:500.201 natural sciences7. Clean energyIceCubeHigh Energy Physics - ExperimentLIMITSHigh Energy Physics - Experiment (hep-ex)SOUTH-POLE0103 physical sciencesPARTICLESddc:530Limit (mathematics)010306 general physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsICEDetectorIceSupersymmetryCAPTUREParticlesPhysics and AstronomyNeutrino detectorNeutralinoHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of the AtmosphericνeSpectrum with IceCube

2015

We present a measurement of the atmospheric $\nu_e$ spectrum at energies between 0.1 TeV and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric $\nu_e$ originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of livetime, then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional $\nu_e$ fluxes to higher energies. The data constrain the conventional $\nu_e$ flux to be $1.3^{+0.4}_{-0.3}$ times a baseline prediction from a Honda's calculation, including the knee of the cosmic-…

AMANDANuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaHadronCASCADES01 natural sciences7. Clean energyPower lawIceCubeNuclear physicsFlux (metallurgy)DESIGNLikelihood analysisDIGITIZATION0103 physical sciencesNEUTRINO FLUX010306 general physicsDETECTORPhysics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologySpectrum (functional analysis)DetectorPERFORMANCEENERGY-SPECTRUMEvent selectionPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsSYSTEMPhysical Review D
researchProduct

Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

2013

A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle dist…

SELECTIONHIGH-ENERGY NEUTRINOSNuclear and High Energy PhysicsTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesCosmic rayAstrophysics7. Clean energyIceCube Neutrino ObservatoryRATIOObservatoryDETECTORSddc:530Muon neutrinoZenithPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonICEPERFORMANCEPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The exposure of the hybrid detector of the Pierre Auger Observatory

2010

The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ‘‘hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data coll…

Physics::Instrumentation and DetectorsAstronomy01 natural sciencesCoincidenceAugerFluorescence detectorData acquisitionAuger experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFÍSICA DE PARTÍCULASSettore INF/01 - InformaticaCascada atmosférica extensaPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger Observatoryultra high energy cosmic rays; Pierre Auger Observatory; extensive air showers; trigger; exposure; fluorescence detector; hybridENERGY-SPECTRUMRadiación cósmicaSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaExtensive air showerMeasure (physics)FOS: Physical sciencesCosmic rayCosmic RayFluorescence spectroscopyUltra high energy cosmic rayExposureNuclear physicsOpticsSHOWERS0103 physical sciencesExtensive air showers010306 general physicsCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaAstronomy and AstrophysicsUltra high energy cosmic raysHybrid[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]fluxTriggerExperimental High Energy PhysicsbusinessSYSTEMAstroparticle Physics
researchProduct

Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

2009

Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ ∝ P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ∼ 10% seasonal modulation and ∼ 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is val…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]: 96.50.sdRadiación CósmicaIMPACTAstronomyExtensive air showerFOS: Physical sciencesCosmic rayAstrophysicsExtensive air showers; UHECR; Atmosphere; Weather01 natural sciencesCOSMIC-RAY CASCADESAugerAtmosphereENERGYObservatory0103 physical sciencesExtensive air showersRECONSTRUCTION96.50.sf010303 astronomy & astrophysicsMolière radiusWeatherInstrumentation and Methods for Astrophysics (astro-ph.IM)96.50.sbPierre Auger ObservatoryPhysics010308 nuclear & particles physicsAtmosphereUHECRDetectorFísicaAstronomy and AstrophysicsPresión AtmosféricaPROFILES[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Longitudinal developmentATMOSFERA (ESTUDO)13. Climate actionExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGClimaAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy

2013

AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore>100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use…

EPICA-DOME-C010504 meteorology & atmospheric sciencesDEEP ICEBoreholeAntarctic ice sheetDUSTddc:500.2ANTARCTIC ICE-SHEET01 natural sciencesIceCube Neutrino ObservatoryIceCubePaleontology0103 physical sciencesPaleoclimatologyddc:550COREGlacial period010303 astronomy & astrophysicsSIPLE DOME0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_categoryEAST ANTARCTICAVOLCANIC WINTERVOSTOKOPTICAL-PROPERTIESStratigraphy13. Climate actionEarth and Environmental SciencesRadiometric datingIce sheetphysicsGeology
researchProduct

Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory"[Astroparticle Physics 32…

2010

The Pierre Auger Collaboration... K.B. Barber... J.A. Bellido... R.W. Clay... B.R. Dawson... V.C. Holmes... J. Sorokin... P. Wahrlich... B.J. Whelan... M.G. Winnick... et al.

Astroparticle physicsPhysicsPierre Auger Observatory[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010308 nuclear & particles physicsAstronomyDetectorAstronomyAstronomy and AstrophysicsAstrophysics01 natural sciencesAuger[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy Physics0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstroparticle Physics
researchProduct

IceTop : the surface component of IceCube

2012

IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an …

FLUXNuclear and High Energy PhysicsAir showerPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAir shower; Cosmic rays; Detector; IceCube; IceTopFOS: Physical sciencesCosmic rayddc:500.27. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubeShowerData acquisitioncosmic raysDIGITIZATION0103 physical sciencesSHOWERSCalibrationddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysRemote sensingPhysicsMuondetector010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyDetectorENERGY-SPECTRUMAir showerPhysics and AstronomySIMULATIONIceTopHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Measurement of South Pole ice transparency with the IceCube LED calibration system

2013

The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsSouth Pole icePhoton progagationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubePhysics::GeophysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesCalibrationddc:53014. Life underwater010306 general physicsAbsorption (electromagnetic radiation)InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationRemote sensingPhysicsOptical properties010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for AstrophysicsIceCube; Optical properties; Photon propagation; South Pole iceSouth PoleiceInstrumentation and Detectors (physics.ins-det)Charged particleData setPhoton propagationAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Improvement in fast particle track reconstruction with robust statistics

2014

The IceCube project has transformed one cubic kilometer of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This manuscript describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muo…

Nuclear and High Energy PhysicsParticle physicsCherenkov detectorPhysics::Instrumentation and DetectorsFOS: Physical sciencesddc:500.2Neutrino telescopeTrack reconstructionlaw.inventionIceCubelawCoincidentAngular resolutionddc:530InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingIce CubePhysicsMuonTrack (disk drive)DetectorIceCube; Neutrino astrophysics; Neutrino telescope; Robust statistics; Track reconstructionRobust statisticsNeutrino astrophysicsNeutrino detectorHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope

2020

Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomy01 natural sciences030218 nuclear medicine & medical imaginglaw.invention0302 clinical medicinelawObservatoryatmosphere [muon]Instrumentationphysics.ins-detMathematical PhysicsLarge detector-systems performancePhysicsInstrumentation et méthodes en physiquePerformance of high energy physics detectorsData reduction methods; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of high energy physics detectorsDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsresistive plate chamberInstrumentation and Detectors (physics.ins-det)trajectory [muon]Augerobservatorymuon: atmosphereAstrophysics - Instrumentation and Methods for AstrophysicsData reduction methodsatmosphere [showers]Cherenkov detectorairCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raymuon: trajectoryNuclear physics03 medical and health sciencesHodoscopeData reduction method0103 physical sciencesCalibrationHigh Energy Physicsddc:610cosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]hodoscopeFísicaAutres mathématiquesstabilitycalibrationData reduction methods Large detector systems for particle and astroparticle physics Large detector-systems performance Performance of High Energy Physics DetectorsExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentRAIOS CÓSMICOSastro-ph.IM
researchProduct

Search for ultrahigh-energy tau neutrinos with IceCube

2012

The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25  km3. The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60±0.19(stat)+0.56−0.58(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E2νΦ90(νx)<16.3×10−8  GeV cm−2…

SELECTIONAMANDANuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESCosmic rayddc:500.2PROPAGATIONAstrophysicsElectron01 natural sciencesAmanda0103 physical sciencesEARTHddc:530Ultrahigh energy010306 general physicsPropagationSelectionPhysicsRange (particle radiation)Muon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsEarthPhysics and AstronomyInduced CascadesTELESCOPESHigh Energy Physics::ExperimentNeutrinoTelescopes
researchProduct

Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory

2008

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an E−2ν differential energy spectrum the limit set at 90% C.L. is E2νdNντdEν<1.3×10−7  GeV cm−2 s−1 sr−1 in the energy range 2×1017 eV<E<2×1019  eV.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FLUORESCENCE DETECTORAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyOsservatorio Pierre AugerCosmic ray7. Clean energy01 natural sciencesNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]PACS: 95.55.Vj 95.85.Ry 98.70.SaPionRaggi cosmicimuonSEARCH0103 physical sciencesNeutrinoEARTHPartículas ElementalesElectromagnetismo010306 general physicsCosmic raysCharged currentCiencias ExactasPierre Auger ObservatoryPhysicsAIR-SHOWERSRange (particle radiation)Muon[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicspionand other elementary particlesFísicaDETETOREScosmic ray detectorsEnergia ultra altaRadiación cósmicaCOSMIC-RAYSand other elementary particle detectors13. Climate actionHigh Energy Physics::ExperimentNeutrinoSciami atmosferici estesiLepton
researchProduct

Trigger and aperture of the surface detector array of the Pierre Auger Observatory

2010

The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive airshowers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidates howers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 1018 eV, for all zenith angles between 03 and 603, independently of the position of the impact point and of the mass of the primary particl…

Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; ExposurePhysics::Instrumentation and DetectorsAstronomyHigh-Energy Cosmi Ray7. Clean energy01 natural sciencesAugerAcceptance and Trigger Efficiency010303 astronomy & astrophysicsInstrumentationComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)PhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryHigh energyFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AIR SHOWERSApertureInstrumentationAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerFOS: Physical sciencesCosmic rayENERGIACosmic RayUltra high energy cosmic rayExposureOpticsultra high energy cosmic rays Auger Observatory extensive airshowers trigger exposure0103 physical sciencesPARTICLESExtensive air showersSurface DetectorInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaUltra high energy cosmic raysUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]TriggerAuger ObservatoryExperimental High Energy PhysicsHigh Energy Physics::Experimentbusiness
researchProduct

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

2014

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscilla…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsTELESCOPEPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)TRACK RECONSTRUCTIONMuon neutrinoddc:530Neutrino oscillationPhysicsHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Solar neutrino problemPERFORMANCENeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoNeutrino astronomySYSTEM
researchProduct

IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters

2013

Physical review / D 88(12), 122001 (2013). doi:10.1103/PhysRevD.88.122001

Nuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxy merger53001 natural sciencesSIGNALSGalaxy group0103 physical sciencesPARTICLESHALOESddc:530Interacting galaxy010306 general physicsGalaxy clusterAstrophysics::Galaxy AstrophysicsDwarf galaxyHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomyCONSTRAINTSGalaxyEVOLUTIONPhysics and AstronomyElliptical galaxyHigh Energy Physics::ExperimentDark galaxyAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector

2012

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent s…

Particle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesGeneral Physics and AstronomyCosmic rayddc:500.2MASSIVE PARTICLESAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)LIMITSWIMP0103 physical sciencesddc:550010306 general physicsLight dark matterCANDIDATESHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsCONSTRAINTSCAPTURENEUTRINOSPhysics and AstronomyNeutrino detector13. Climate actionWeakly interacting massive particlesHigh Energy Physics::ExperimentCryogenic Dark Matter SearchNeutrinoAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

2008

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the ighest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ~6 x 1019 eV and AGN at a distance less than ~75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate fro…

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyOsservatorio Pierre AugerAstrophysicsGALAXY CLUSTER SURVEYAstrophysicsauger01 natural sciencesHigh energy cosmic rayRaggi cosmiciAstrophysical jetGMFObservatoryUltra-high-energy cosmic ray010303 astronomy & astrophysicsPhysicsBL-LACERTAEGreisen–Zatsepin–Kuz’min effect[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGINUHECRAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKRadiación cósmicaAnisotropíaCATALOGobservatoryddc:540EGMFCUTOFFComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRELATIVISTIC JETSActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaCosmic background radiationFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATION[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesextra-galacticPARTICLESAGNAstrophysics::Galaxy AstrophysicsCiencias ExactasPierre Auger ObservatoryANISOTROPYhigh energy cosmic raysSciami atmosferici010308 nuclear & particles physicsFísicaAstronomyAstronomy and AstrophysicsCENTAURUSGalaxyExperimental High Energy Physics
researchProduct