6533b7d1fe1ef96bd125c403

RESEARCH PRODUCT

Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory

A. SegretoGünter SiglOrazio ZapparrataP. StassiRadomir SmidaA. Machado PayerasG. CataldiV. ScheriniCarola DobrigkeitM. MuzioMarcio Aparecido MullerSrijan SehgalFernando GollanCarla BleveRodrigo Guedes LangM. E. BertainaF. De PalmaAlan WatsonM. PerlinMihai Niculescu-oglinzanuL. ValoreBelén AndradaMarina ScornavaccheV. De SouzaG. GolupViolet M. HarveyD. HarariN. KunkaT. BisterF. RiehnP. TobiskaJonathan BiteauM. I. MichelettiA. InsoliaJesús Peña-rodríguezMatías J. RoncoroniSullivan MaraficoM. KleifgesD. ZavrtanikMarco GiammarchiR.j. Barreira LuzD. MeloG. P. GuedesF. SalamidaN. FazziniJonas GlombitzaF. C. T. BarbatoA. YushkovAlina Mihaela BadescuIoana Codrina MarisR. SatoLourenco LopesToshihiro FujiiToshihiro FujiiS. SchröderItalo EpicocoMarvin GottowikCristina GaleaM. ProuzaBrian FickXavier BertouA. Di MatteoJulian KempEric MayotteD. NitzEsteban RouletP. AbreuD. RavignaniR. M. De AlmeidaK. H. KampertJ. C. Arteaga VelázquezJ. KleinfellerA. ZepedaM. Gómez BerissoR. C. ShellardRoberto MussaA. PuyleartJakub JuryšekPetr HamalSteffen HahnJuan Carlos D'olivoJulien ManshandenLorenzo CaccianigaPedro AssisH. MartinezA. EtchegoyenG. C. HillCorinne BeratM. GillerJan PękalaRúben ConceiçãoValerio VerziB. TomeJ. ChudobaL. LuH. J. MathesStanislav MichalB. WundheilerAndres TravainiK. ChoiAlex KääpäRalph EngelFlavia GesualdiJ. Perez ArmandE. VarelaD. Correia Dos SantosJ. RidkyL. R. WienckeT. PierogFrançois MontanetJustin M. AlburyP. L. GhiaMarcel KöpkeM. PlatinoJ.d. Sanabria GomezRodrigo PelayoJose J. GonzalezStijn BuitinkKatie MulreyCarlos EscobarG. De MauroKevin-druis MerendaVladimir LenokL. PerroneH. SchielerC. J. Todero PeixotoMario BuscemiD. NosekE. SantosNiklas LangnerAntonella CastellinaEleonora GuidoAntonio CondorelliM. RisseJörg R. HörandelJ. F. Valdés GaliciaI. De MitriJonathan BlazekJose ChinellatoJ. Rodriguez RojoFridtjof FeldbuschA.l. Garcia VegasEnrique ZasI. Lhenry-yvonC. TrimarelliGaia SilliA. FilipčičA.d. SupanitskyPhilipp PapenbreerClaudio GalelliA. WeindlM. Suárez-duránJ. StasielakT. HuegeT. HuegeHernán Gonzalo AsoreyL. NellenL. AnchordoquiAlena BakalovaC. MorelloMiroslav HrabovskýPetr TravnicekTrent D. GrubbG. ParenteFabrizia CanforaFernando ContrerasA. HaungsJuan Manuel FigueiraRoberta ColalilloPaul SommersClara Keiko Oliveira WatanabeB. GarcíaM. SchimpA. G. MariazziR. LópezKaren S. Caballero-moraH. WilczyńskiIoana CaracasA. Letessier-selvonLorenzo CazonC. Pérez BertolliF. SanchezF. SarazinS. PetreraMarc WeberDavid SchmidtG. FarrarL. ZehrerJ. De OliveiraAlejandro AlmelaP. MantschZ. SzadkowskiM. SchimassekC. HojvatJan EbrJacco VinkPeter L. BiermannL. Bonneau ArbeletcheMaximilian ReininghausPaolo PriviteraM. A. Leigui De OliveiraJaime Alvarez-muñizAlexandru Gherghel-lascuMartin ErdmannJ. De JesúsA. TaboadaG. MarsellaE. M. SantosA. GorgiH.o. KlagesB. C. ManningDariusz GoraBjarni PontThomas BretzPetr JanecekCorbin CovaultMatías Rolf HampelFrank G. SchröderFrank G. SchröderR. SquartiniAlfred MüllerP.f. Gómez VitaleA. StreichGioacchino Alex AnastasiM. WirtzDavid WittkowskiG. SalinaRoger W ClayOlivier DelignyW. M. NamasakaM. MastrodicasaA. C. RoveroAlexandru BalaceanuA. A. NucitaAlan ColemanLino MiramontiS. J. SaffiLukáš VaclavekJ. F. SorianoD. De Oliveira FrancoR. Alves BatistaBruce R. DawsonOctavian SimaAna Martina BottiJeffrey BrackOlaf ScholtenOlaf ScholtenP.o. MazurK.-h. BeckerMaria Rita ColucciaDusan MandatFrancesco FenuHumberto Ibarguen SalazarM. PimentaTomáš FodranAlina Nasr-esfahaniP.r. Araújo FerreiraTobias WinchenG. MancarellaB. KeilhauerFlorian Lukas BriechleDarko VeberičUgo GiaccariS. J. SciuttoF. PedreiraChristian Sarmiento-canoRaul SarmentoG. Medina-tancoFelix SchlüterP. RuehlCarla AramoVincenzo RiziC. J.w.p. TimmermansJulien SouchardJon Paul LundquistA. MenshikovD. MartelloJuan Miguel CarcellerC. M. SchäferMarkus RothSilvia MollerachO. Martínez BravoIsabel GoosD. HeckA. TapiaJosina SchultePeter HansenM. Del RíoH. GemmekeFabian GobbiB. L. LagoP. SavinaW. Rodrigues De CarvalhoDenise BoncioliM. UngerF. GuarinoJohn MatthewsPeter BuchholzMarco AgliettaMiguel MostafaE.e. Pereira MartinsSerguei VorobiovMartina BohacovaMiroslav PechM. PothastJ. HulsmanJ. RautenbergPavel HorvathQ. LuceMarcus NiechciolJuan Pablo GongoraPaula Gina IsarSofia AndringaMaximilian StadelmaierNataliia BorodaiMarcos CerdaD. Lo PrestiS. J. De JongSamo StaničJarryd A. DayA. SaftoiuA.c. Cobos CeruttiMartin VaculaJ. R. T. De Mello NetoV. NovotnyV. K.c. VarmaRossella CarusoA. LuceroFernando CatalaniN. GonzálezKai DaumillerHeino FalckeHeino FalckeS. QuerchfeldOlena TkachenkoThomas HebbekerSergio DassoTristan SudholzJ. ŠUpíkCarlo VenturaMartín Miguel FreireV. PirronelloJ. VichaLadislav ChytkaA. AabCarla TariccoMatias TuerosLuis A. NunezT. SuomijärviJ. PallottaHernan WahlbergA. ParraA. FusterM. TriniP.g. Brichetto OrcheraI. AllekotteA. C. FauthCarla BonifaziJose A. BellidoFabio ConvengaI.d. Vergara QuispeM. ZavrtanikE. De VitoGiovanni ConsolatiPetr SchovanekDenis StancaRalf UlrichL. NožkaG. MatthiaeAntonio BuenoGualberto AvilaJohn FarmerMaria-teresa DovaR.c. Dos AnjosAdriana Vásquez-ramírezM. PalatkaJeffrey A. Johnsen

subject

showers: energylongitudinal [showers]interaction: modelPhysics::Instrumentation and DetectorsAstronomyCalibration and fitting methods; Cluster finding; Data analysis; Large detector systems for particle and astroparticle physics; Particle identification methods; Pattern recognition01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Particle identification methodscluster findingsurface [detector]ObservatoryLarge detector systemsInstrumentationMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsPattern recognition cluster finding calibration and fitting methodsPhysicsSettore FIS/01 - Fisica Sperimentalemodel [interaction]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsData analysicalibration and fitting methodsenergy [showers]AugerobservatoryPattern recognition cluster finding calibration and fitting methodastroparticle physicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airneural networkAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Data analysisFOS: Physical sciences610Cosmic raydetector: fluorescencePattern recognition0103 physical sciencesddc:530High Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic radiation: UHEstructureparticle physicsnetwork: performance010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Ciencias ExactasCherenkov radiationfluorescence [detector]Pierre Auger ObservatoryCalibration and fitting methodsmass spectrum [nucleus]showers: atmospheredetector: surfacehep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsCluster findingFísicaresolutioncalibrationComputational physicsperformance [network]Cherenkov counterAir showerLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::Experimentnucleus: mass spectrumshowers: longitudinalRAIOS CÓSMICOSEnergy (signal processing)astro-ph.IM

description

The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed $X_{\mathrm{max}}$ using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than $25~\mathrm{g/cm^{2}}$ at energies above $2\times 10^{19}~\mathrm{eV}$.

10.1088/1748-0221/16/07/p07019http://hdl.handle.net/2066/236313