0000000000143726

AUTHOR

Stijn Buitink

showing 42 related works from this author

Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory

2021

The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the groun…

showers: energylongitudinal [showers]interaction: modelPhysics::Instrumentation and DetectorsAstronomyCalibration and fitting methods; Cluster finding; Data analysis; Large detector systems for particle and astroparticle physics; Particle identification methods; Pattern recognition01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Particle identification methodscluster findingsurface [detector]ObservatoryLarge detector systemsInstrumentationMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsPattern recognition cluster finding calibration and fitting methodsPhysicsSettore FIS/01 - Fisica Sperimentalemodel [interaction]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsData analysicalibration and fitting methodsenergy [showers]AugerobservatoryPattern recognition cluster finding calibration and fitting methodastroparticle physicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airneural networkAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Data analysisFOS: Physical sciences610Cosmic raydetector: fluorescencePattern recognition0103 physical sciencesddc:530High Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic radiation: UHEstructureparticle physicsnetwork: performance010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Ciencias ExactasCherenkov radiationfluorescence [detector]Pierre Auger ObservatoryCalibration and fitting methodsmass spectrum [nucleus]showers: atmospheredetector: surfacehep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsCluster findingFísicaresolutioncalibrationComputational physicsperformance [network]Cherenkov counterAir showerLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::Experimentnucleus: mass spectrumshowers: longitudinalRAIOS CÓSMICOSEnergy (signal processing)astro-ph.IM
researchProduct

Search for relativistic magnetic monopoles with IceCube

2012

We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits$ for $\beta\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass …

FLUXSELECTIONAMANDANuclear and High Energy PhysicsParticle physicsProton decayCherenkov detectorPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleFOS: Physical sciencesddc:500.201 natural scienceslaw.inventionIceCube Neutrino ObservatoryPhysics::GeophysicsIceCubelaw0103 physical sciencesGrand Unified Theoryddc:530NEUTRINO TELESCOPE010306 general physicsCherenkov radiationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsFIELDS85-05Physics and AstronomyNeutrino detectorAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The design and performance of IceCube DeepCore

2011

The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector a…

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAntarticaGeneratorAstrophysicsNeutrino telescope01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryAntarctica; DeepCore; Detector; IceCube; NeutrinoIceCubeHigh Energy Physics - Experiment (hep-ex)WIMP0103 physical sciencesNeutrino010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsMuon010308 nuclear & particles physicsIceICEAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsDetectorInstrumentation and Detectors (physics.ins-det)GENERATORDeepCoreSupernovaAir showerPhysics and AstronomyNeutrino detector13. Climate actionddc:540AntarcticaHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory.

2010

We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq 1.4 \times 10^{-6}$ GeV cm$^{-2}$ sec$^{-1}$ sr$^{-1}$ for neutrinos in the energy range from $3\times10^7$ to $3\times10^9$ GeV.

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayElementary particleAstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciencesIceCube Neutrino Observatory[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]cosmic raysSpectrummuon0103 physical sciencesNeutrinoddc:530010306 general physicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::Phenomenologypionand other elementary particlesCosmic-RaysMassless particleNeutrino detectorHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

2010

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2 - 200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

Particle physicsAMANDA[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Solar neutrinoAstrophysics::High Energy Astrophysical PhenomenaAMANDA; Atmospheric neutrinos; Cherenkov radiation; Neural net; Unfoldingneural netFOS: Physical sciencesAetiology screening and detection [ONCOL 5]01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsunfoldingPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cherenkov radiationHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsSolar neutrino problematmospheric neutrinosCosmic neutrino backgroundNeutrino detectorddc:540Measurements of neutrino speedHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube

2012

Astroparticle physics 42, 15 - 32 (2013). doi:10.1016/j.astropartphys.2012.11.003

Knee regionAstrophysicsTracking (particle physics)01 natural sciencesParticle identificationIceCubeTRACKINGWATERCherenkovNeutrino energyNEUTRINO TELESCOPEUltra-high-energy cosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSEADetectorAstrophysics::Instrumentation and Methods for AstrophysicsLIGHTComposition; Cosmic rays; Energy spectrum; IceCube; IceTop; Knee regionddc:540IceTopPARTICLE IDENTIFICATIONAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsIceCube detectorCompositionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2IceCube Neutrino ObservatorySEARCHESAccelerationcosmic raysdE/dx0103 physical sciences010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationTruncated meanMuon energy010308 nuclear & particles physicsAstronomyAstronomy and Astrophysics540Physics and AstronomycompositionEnergy SpectrumTEVEnergy spectrum
researchProduct

Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina -Comision Nacional de Energia Atomica; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia -the Australian Research Council; Braz…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomyPerformance of High Energy Physics Detector01 natural sciences7. Clean energyEtc)030218 nuclear medicine & medical imaging0302 clinical medicineFront-end electronics for detector readoutAPDsInstrumentationphysics.ins-detPhoton detectors for UVMathematical PhysicsInstrumentation et méthodes en physiqueEBCCDsVisible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)electronicsSettore FIS/01 - Fisica SperimentaleCalibration and fitting methods; Performance of High Energy Physics Detectors; Photon detectors for UVPhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsInstrumentation and Detectors (physics.ins-det)charged particleAPDs; Calibration and fitting methods; Performance of High Energy Physics Detectors; Photon detectors for UV; CCDs; Cluster finding; CMOS imagers; EBCCDs; EMCCDs; Etc); Front-end electronics for detector readout; Pattern recognition; G-APDs; Si-PMTs; Visible and IR photons (solid-state) (PIN diodesAugerobservatorydensity [muon]Pattern recognition cluster finding calibration and fitting methodG-APDsChristian ministryupgradeddc:620Astrophysics - Instrumentation and Methods for Astrophysicsperformanceatmosphere [showers]Land accessCherenkov counter: waterairAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesVisible and IR photons (solid-state) (PIN diodes03 medical and health sciencesPolitical sciencePattern recognition0103 physical sciencesmuon: densityFront-end electronics for detector readout; Pattern recognitionphotomultiplier: siliconHigh Energy Physicscosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610CMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Engineering & allied operationsscintillation counterCalibration and fitting methodsshowers: atmosphere010308 nuclear & particles physicswater [Cherenkov counter]Cluster findingAutres mathématiquesCCDsEMCCDsResearch councilefficiencyExperimental High Energy Physicssilicon [photomultiplier]Performance of High Energy Physics DetectorsHigh Energy Physics::ExperimentHumanitiesRAIOS CÓSMICOSastro-ph.IM
researchProduct

A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory

2020

The time and location of the 1,598 verified and reconstructed elves, used for the analysis showcased in this paper, are publicly available on the website of the Pierre Auger Observatory (https://www.auger.org/ index.php/science/data). We wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. We acknowledge Robert Marshall for providing one of the most advanced elve simulations to the public, a key tool in understanding the elves observed by the Pierre Auger Observatory. The successful installation, commissioning, and operation of the Pierre Auger Ob…

010504 meteorology & atmospheric sciencesAstronomyField of view010502 geochemistry & geophysics01 natural sciences7. Clean energyAugerlcsh:QB1-991ObservatoryultravioletStormddc:550UHE Cosmic Raystime resolutionCosmic-ray observatoryPhysicslcsh:QE1-996.5astro-ph.GeologyAugerwidth [beam]IonosphereField of viewGeologylcsh:AstronomyUHE [cosmic radiation]Environmental Science (miscellaneous)horizonLightningddc:530High Energy PhysicsIonosphereCosmic-ray observatory0105 earth and related environmental sciencesfluorescence [detector]backgroundFísicaAstronomyStormsensitivityLightningopticslcsh:GeologyElves UV fluorescence detectorsThunderstorm13. Climate actionExperimental High Energy PhysicsnetworkThunderstormGeneral Earth and Planetary SciencesElvesObservatory
researchProduct

Measurement of acoustic attenuation in South Pole ice

2010

Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 \pm 0.57 km^(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda = 1/alpha of ~1/300 m with 20% uncertainty. No significant depth or …

Acoustic attenuation; Acoustics; Ice; Neutrino astronomy; South Pole[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]010504 meteorology & atmospheric sciences[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]iceFOS: Physical sciencesAetiology screening and detection [ONCOL 5]Lambda01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]OpticsSpectrum0103 physical sciencesacousticsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesPhysicsSouth Pole010308 nuclear & particles physicsbusiness.industryAttenuation[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TransmitterAttenuation lengthAstronomy and AstrophysicsGeodesy004AmplitudeAttenuation coefficientddc:540NeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsbusinessAcoustic attenuationinfo:eu-repo/classification/ddc/004acoustic attenuation
researchProduct

First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

2011

We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of $8.3\pm 3.6$. At 90% confidence we set an upper limit of $E^2\Phi_{90%CL}<3.6\times10^{-7} GeV \cdot cm^{-2} \cdot s^{-1}\cdot sr^{-1} $ on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that $\Phi \propto E^{-2}$ and that the flavor composition of the $\nu_e : \nu_\mu : \nu…

HIGH-ENERGY NEUTRINOSSELECTIONNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaHigh-energy neutrinosFOS: Physical sciencesFluxCosmic rayElementary particleAstrophysicsParticle detectorIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SCATTERINGddc:530High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMICEHigh Energy Physics::Phenomenology004Massless particlePhysics and AstronomyNeutrino detectorAMANDA-IIHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomenainfo:eu-repo/classification/ddc/004LeptonPhysical Review D
researchProduct

A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector

2011

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A to…

SELECTIONAMANDANuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesAmandaIceCube Neutrino ObservatoryHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesddc:530Selection010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsICEIceHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsCosmic-RaysSolar neutrino problemCOSMIC-RAYS004MODELPhysics and AstronomyNeutrino detectorTELESCOPESHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomenainfo:eu-repo/classification/ddc/004ModelTelescopesLepton
researchProduct

An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts

2012

Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

Physics::Instrumentation and DetectorsAstronomyAstrophysics::High Energy Astrophysical PhenomenaElectronvoltFOS: Physical sciencesFluxhigh-energy neutrinosCosmic rayddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesddc:070IcecubeAccelerationPioncosmic rays0103 physical sciencesTelescope010303 astronomy & astrophysicsVery EnergeticHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFluxMultidisciplinary010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySearchAstrophysics::Instrumentation and Methods for Astrophysics13. Climate actionGamma Ray BurstsHigh Energy Physics::ExperimentNeutrinoGamma-ray burstAstrophysics - High Energy Astrophysical PhenomenaNATURE
researchProduct

Background studies for acoustic neutrino detection at the South Pole

2011

The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to …

SignalsTELESCOPEAbsolute noise levelAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesAstrophysics7. Clean energy01 natural sciencesIceCube Neutrino Observatorylaw.inventionIceCubeTelescopeAbsolute noise level; Acoustic neutrino detection; Neutrino flux limitNeutrino flux limitlawSIGNALS0103 physical sciencesWATERDetection theory010306 general physicsTelescopeInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsAcoustic neutrino detector010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsWaterAstronomy and AstrophysicsGeodesyAcoustic neutrino detectionNoiseNeutrino detectorPhysics and Astronomy13. Climate actionddc:540NeutrinoAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

2013

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from …

Nuclear and High Energy PhysicsTELESCOPEPoint sourcePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsddc:500.201 natural sciences7. Clean energyIceCube Neutrino ObservatoryIceCubeHESS0103 physical sciencesddc:530MILAGRO010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsPLANEGalactic planeAir showerPhysics and Astronomy13. Climate actionDISCOVERYMilagroMOLECULAR CLOUDSTEVRADIATIONHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEMISSION
researchProduct

The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory

2021

FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operati…

AstronomyLarge detector systems for particle and astroparticle physics; Optics; Photon detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc); Real-time monitoringReal-time monitoring01 natural sciencesAugerSuccessful operationObservatoryopticalAPDshardwareAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsInstrumentationPhoton detectors for UVMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEEBCCDsSettore FIS/01 - Fisica SperimentalePhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsAugerobservatoryRobotic telescopeG-APDsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSciences exactes et naturellesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesprogrammingdetector: fluorescencePhotometry (optics)0103 physical sciencesddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physicsvisible and IR photons (solid-state) (PIN diodesCMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsRemote sensingetc)fluorescence [detector]Pierre Auger Observatory010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsActive monitoringOpticsCCDslasermonitoringEMCCDsLarge detector systems for particle and astroparticle physicatmosphereExperimental High Energy PhysicsOpticEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Calibration and Characterization of the IceCube Photomultiplier Tube

2010

Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resoluti…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhotonPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)AstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciencesIceCube Neutrino Observatory[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Optics0103 physical sciencesNeutrinoCherenkovddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysCherenkov radiationPhysicsCherenkov; Cosmic rays; Ice; Neutrino; PMT010308 nuclear & particles physicsbusiness.industry[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IceAstrophysics::Instrumentation and Methods for AstrophysicsPMTNeutrinoPhotonicsAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

Design and implementation of the AMIGA embedded system for data acquisition

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and admin-istrative staff in Malargtie. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energla Atomica, Agencia Nacional de Promocion Cientffica y Tec-nologica (ANPCyT) , Consejo Nacional de Investigaciones Cientfficas y Tecnicas (CONICET) , Gobierno de la Provincia de Mendoza, Municipalidad de Malargtie, NDM Holdings and Valle Las Leilas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho…

muon: showersDetector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)Physics::Instrumentation and Detectorsdata acquisitionAstronomycosmic radiation: electromagnetic componentengineeringprimary [cosmic radiation]Particle detectors01 natural sciencesenergy: thresholdData acquisition concepthardwareInstrumentationMathematical Physicsshowers [muon]media_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEControl and monitor systems onlinePhysicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsthreshold [energy]16. Peace & justiceAugerelectromagnetic component [cosmic radiation]observatoryDetector control systems (detector andexperiment monitoring and slow-control systemslanguageupgradeAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenadatabases)atmosphere [showers]Land accessarchitectureEuropean communityairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalgorithmsPolitical science0103 physical sciencesmedia_common.cataloged_instanceddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610Control and monitor systems online; Data acquisition concepts; Detector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases); Particle detectorsEuropean union010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Ciencias Exactasscintillation countershowers: atmosphere010308 nuclear & particles physicsDetector control systems (detector and experiment monitoring and slow-control systemsData acquisition conceptsFísicastabilitylanguage.human_languagecosmic radiation: primarymonitoringResearch councilExperimental High Energy PhysicsHigh Energy Physics::ExperimentControl and monitor systems on-linePortuguese[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]HumanitiesRAIOS CÓSMICOSastro-ph.IM
researchProduct

Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

2020

Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60 using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.

Physics::Instrumentation and DetectorsAstronomyprimary [cosmic radiation]01 natural sciences030218 nuclear medicine & medical imagingAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinesurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Data Processing; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of High Energy Physics DetectorsInstrumentationMathematical PhysicsData Processing; Large detector systems for particle and astroparticle physics; Largedetector-systems performance; Performance of High Energy Physics DetectorsLarge detector-systems performanceHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEInstrumentation et méthodes en physiqueData ProcessingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugercascadeobservatoryCascadeLargedetector-systems performanceddc:620Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airAstrophysics::High Energy Astrophysical PhenomenawaterFOS: Physical sciencesCosmic rayAtmosphere03 medical and health sciencesOptics0103 physical sciencesHigh Energy Physics14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithEngineering & allied operationsPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryhep-exdetector: surfaceLarge detector systems for particle and astroparticle physicsAutres mathématiquescosmic radiation: primaryCherenkov counterExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentPerformance of High Energy Physics Detectorsbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina — Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia — the Australian Research Council; Be…

interaction [cosmic radiation]mass spectrum [cosmic radiation]dispersion relationAstronomyAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumcosmic ray experimentFOS: Physical sciencesultra high energy cosmic rayscosmic radiation: interactioninvariance: Lorentz01 natural sciences530UHEultra high energy cosmic rayenergy: thresholdFundamental physics gravitational waves LISA Tests of general relativityCosmic ray experiments0103 physical sciencespropagationddc:530physics of the early universeHigh Energy PhysicsLorentz [invariance]010303 astronomy & astrophysicsphoton: fluxflux [photon]Lorentz [violation]High Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEenergy: high010308 nuclear & particles physicscosmic radiation: mass spectrumcosmic ray experiments; ultra high energy cosmic rays; physics of the early universeSettore FIS/01 - Fisica SperimentaleAstronomy and AstrophysicsASTROFÍSICAUltra-high energy cosmic raysthreshold [energy]violation: LorentzAugerobservatoryelectromagnetickinematicsExperimental High Energy Physicshigh [energy]cosmic ray experimentsAstrophysics - High Energy Astrophysical PhenomenaPhysics of the early universe
researchProduct

Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory

2016

We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles ra…

FLUORESCENCE YIELDAstronomymagnetic monopolemagnetic fieldAstrophysics7. Clean energy01 natural sciencesObservatoryUHE Cosmic Raysair-showerMonte Carlo010303 astronomy & astrophysicsMagnetic Monopolesmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicscritical phenomenaFLUORESCENCE YIELD; ENERGY LOSS; DETECTORAugerMagnetic fieldobservatoryLorentz factorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGsymbolsFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical Phenomenaspatial distribution [showers]LorentzENERGY LOSSatmosphere [showers]energyFLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]airmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Magnetic monopoleFOS: Physical sciencesCosmic rayNuclear physicssymbols.namesakecosmic rays0103 physical sciencesddc:530High Energy PhysicsDETECTORCiencias Exactasfluorescence [detector]Pierre Auger Observatorybackground010308 nuclear & particles physicsFísicaASTROFÍSICAUniversefluxultrarelativistic magnetic monopolesAir shower13. Climate actionExperimental High Energy PhysicsrelativisticgalaxyENERGY-LOSS
researchProduct

Search for dark matter from the Galactic halo with the IceCube neutrino telescope

2011

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22 cm3 s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

Nuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaDark matterAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesIceCubeGalactic halo0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsGamma-Ray EmissionHot dark matterAstronomyCosmic-Rays004Dark matter haloParticlesNeutrino detectorAnisotropyHigh Energy Physics::ExperimentHaloDwarf Spheroidal GalaxiesNeutrinoNeutrino astronomyinfo:eu-repo/classification/ddc/004
researchProduct

Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina-Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia-the Australian Research Council; Brazil…

interaction: modelPhysics::Instrumentation and DetectorsAstronomyHadronGeneral Physics and AstronomyUltra-high energy cosmic rays muons properties hadronic models01 natural sciencescosmic ray; particle interaction; astroparticle detectorsAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ironsurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]cosmic rayPhysics4. EducationPhysicsSettore FIS/01 - Fisica Sperimentalemeasured [fluctuation]model [interaction]Astrophysics::Instrumentation and Methods for Astrophysicsmodel: hadronicfluctuation: measured3. Good healthAugerobservatoryparticle interactionSciences exactes et naturellesatmosphere [showers]model [particle]airCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raydetector: fluorescenceNuclear physicsastroparticle detectorscosmic raysmuon0103 physical sciencescalorimeterddc:53014. Life underwatercosmic radiation: UHEHigh Energy Physicsdistribution functionelectromagnetic component010306 general physicsAstrophysiquePierre Auger Observatoryfluorescence [detector]Muonshowers: atmospherehep-exdetector: surfacewater [Cherenkov counter]particle: modelSmall deviationsFísicaASTROFÍSICAAir showerExperimental High Energy PhysicsElementary Particles and Fieldshadronic [model]High Energy Physics::Experiment
researchProduct

Muons in air showers at the Pierre Auger Observatory

2015

We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCosmic-ray interactionsAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayextensive atmospherical showers muon density muon number Pierre Auger Observatory cosmic radiation UHEHadronic interaction models7. Clean energyAugerSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsAltitudeSettore FIS/05 - Astronomia e AstrofisicaObservatoryNERGY COSMIC-RAYS DETECTOR MODEL.Extensive air showerscosmic radiation UHEDETECTORScalingCosmic raysZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryMuonNERGY COSMIC-RAYSSettore FIS/01 - Fisica Sperimentaleenergy cosmic-rays; detector; modelAstrophysics::Instrumentation and Methods for AstrophysicsFísica[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ObservatoryASTROFÍSICAextensive atmospherical showersmuon numberMODELmuon densityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

2015

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …

AstrofísicaPhysics and Astronomy (miscellaneous)Raycosmic radiation anisotropy cosmic radiation propagation cosmic radiation deflectionAstronomymagnetic fieldpAstrophysicsanisotropy [cosmic radiation]01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareAugerPierre//purl.org/becyt/ford/1 [https]ObservatoryJetsQuantum Chromodynamicscosmic radiation: VHEenergy: correlationPatternsMonte Carlo010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic radiation: propagationEnergyCOSMIC cancer databaseAngular distance[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleSearchAstrophysics::Instrumentation and Methods for Astrophysicscosmic radiation anisotropyPierre Auger Observatorycosmic radiation: deflectionRadiación cósmicaAugerSurface Detector ArrayCosmicArrivalComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaPrincipal axis theorem[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Regular Article - Experimental PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics and Astronomy (miscellaneous) Engineering (miscellaneous).FOS: Physical sciencesCosmic ray530cosmic radiation: anisotropyParticle detectorSettore FIS/05 - Astronomia e AstrofisicaVHE [cosmic radiation]statistical analysisSpectrum0103 physical sciencesthrustddc:530Engineering (miscellaneous)AstrophysiqueCiencias ExactasPierre Auger Observatoryair: showerscosmic radiation propagationPhysics and Astronomy (miscellaneous); Engineering (miscellaneous)010308 nuclear & particles physicsturbulence[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstroparticles//purl.org/becyt/ford/1.3 [https]ASTROFÍSICAGalactic Magnetic-fieldcorrelation [energy]DirectionExperimental High Energy Physicscosmic radiation deflectionpropagation [cosmic radiation]direct detectiongalaxyObservatory[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]deflection [cosmic radiation]showers [air]Model
researchProduct

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

2010

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by oth…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsParticle physicsMuonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesSolar neutrino problemHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Sidereal timeMeasurements of neutrino speedddc:530High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaNeutrino oscillation
researchProduct

All-particle cosmic ray energy spectrum measured with 26 IceTop stations

2012

Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatory0103 physical sciencesCosmic rays010303 astronomy & astrophysicsZenithPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cosmic rays; Energy spectrum; IceCube; IceTopSpectral indexCOSMIC cancer database010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysics540Air showerKASCADEddc:540IceTopEnergy spectrumNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of the Atmospheric ve flux in IceCube

2012

We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 $\pm$ 66(stat.) $\pm$ 88(syst.) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muo…

DEEPCOREParticle physicsAMANDAPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and Astronomyddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsSEARCH0103 physical sciencesddc:550010306 general physicsNeutrino oscillationDETECTORPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemCosmic neutrino backgroundNeutrino detectorPhysics and Astronomy13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoNEUTRINO-INDUCED CASCADESAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae ( Corrigendum )

2014

Keywords: neutrinos ; supernovae: general ; instrumentation: detectors ; errata ; addenda Reference EPFL-ARTICLE-198916doi:10.1051/0004-6361/201117810eView record in Web of Science Record created on 2014-05-19, modified on 2017-05-12

PhysicsSupernovaLow energyWeb of scienceSpace and Planetary Scienceddc:520Astronomy and AstrophysicsAstrophysicsInstrumentation (computer programming)Sensitivity (control systems)Neutrino
researchProduct

Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

2015

We analyze the distribution of arrival directions of ultra-high energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to $80^\circ$, thus covering from $-90^\circ$ to $+45^\circ$ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the V��ron-Cetty and V��ron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes and for self-clustering of event directions at angular scales up t…

acceleration of particles; astroparticle physicsNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Upper LimitAstronomyCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFieldCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsOtras Ciencias Físicas01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareSettore FIS/05 - Astronomia e AstrofisicaObservatorySpectrum0103 physical sciencesacceleration of particles astroparticle physicsSurface Detector010303 astronomy & astrophysicsacceleration of particleAstrophysics::Galaxy Astrophysicsacceleration of particlesPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleArrayAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]astroparticle physicAstronomy and AstrophysicsASTROFÍSICANucleiSpace and Planetary Scienceastroparticle physicsExperimental High Energy Physicsacceleration of particles; astroparticle physics; Nuclear and High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCatalogSkyAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data

2011

We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesCosmic rayRaysAstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Spectrumddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsSPECTRUMCOSMIC cancer databaseRAYS004Massless particleNeutrino detectorPhysics and AstronomyNeutrinoAstrophysics - Instrumentation and Methods for Astrophysicsinfo:eu-repo/classification/ddc/004Astrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Be…

Physics and Astronomy (miscellaneous)AstronomyAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesFluxCosmic rayAstrophysics7. Clean energy01 natural sciencesdetector: fluorescenceAugercosmic rayssurface [detector]Observatory0103 physical sciencescalorimeterddc:530High Energy Physicscosmic radiation: UHEspectrum [cosmic radiation]010303 astronomy & astrophysicsEngineering (miscellaneous)Engineering & allied operationsHigh Energy Astrophysical Phenomena (astro-ph.HE)fluorescence [detector]Pierre Auger ObservatoryPhysicsastro-ph.HEcosmic radiation: energy spectrumcosmic radiation: spectrumdetector: surface010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugerCalorimeterfluxobservatoryspectralddc:620[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomenaenergy spectrum [cosmic radiation]Energy (signal processing)RAIOS CÓSMICOSultra-high energy cosmic rays energy spectrum features.
researchProduct

Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

2021

The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…

PhotonPhysics::Instrumentation and DetectorsAstronomyElectron01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)mass [cosmic radiation]surface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: cosmic radiationInstrumentationMathematical PhysicsPhysicsAGASAPhysicsSettore FIS/01 - Fisica SperimentaleDetectorcosmic radiation [photon]Astrophysics::Instrumentation and Methods for AstrophysicsMonte Carlo [numerical calculations]electromagnetic [showers]Augerobservatorycosmic radiation [electron]Analysis and statistical methodsnumerical calculations: Monte CarloAnalysis and statistical methodperformancepositron: cosmic radiationatmosphere [showers]Cherenkov detectordata analysis methodAnalysis and statistical methods; Calibration and fitting methods; Cherenkov detectors; Cluster finding; Large detector systems for particle and astroparticle physics; Pattern recognitionCherenkov counter: waterairneural networkAstrophysics::High Energy Astrophysical Phenomena610FOS: Physical sciencesCosmic raycosmic radiation [positron]cosmic radiation: massCalibration and fitting methodNuclear physicsstatistical analysisPattern recognition0103 physical sciencesshowers: electromagneticddc:530ddc:610High Energy Physics010306 general physicsZenithPierre Auger ObservatoryCalibration and fitting methodscosmic radiation [muon]Muonshowers: atmosphere010308 nuclear & particles physicsdetector: surfacehep-exLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]Cherenkov detectorsCluster findingelectron: cosmic radiationRecurrent neural networkmuon: cosmic radiationLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::ExperimentRAIOS CÓSMICOSexperimental results
researchProduct

Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

2011

A search for an excess of muon-neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of livetime between 2001 and 2006 and 149 days of livetime collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total livetime of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding …

Nuclear and High Energy PhysicsParticle physicsLimitsAstrophysics::High Energy Astrophysical PhenomenaDark matterCaptureFOS: Physical sciencesAstrophysicsSouth-Poleddc:500.201 natural sciences7. Clean energyIceCubeHigh Energy Physics - ExperimentLIMITSHigh Energy Physics - Experiment (hep-ex)SOUTH-POLE0103 physical sciencesPARTICLESddc:530Limit (mathematics)010306 general physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsICEDetectorIceSupersymmetryCAPTUREParticlesPhysics and AstronomyNeutrino detectorNeutralinoHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

2016

We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the d…

Ciencias FísicasAstronomyGeneral Physics and Astronomyultra-high energy cosmic raysAstrophysics01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)CODALEMAObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRange (particle radiation)Radio detectorTUNKA-REXSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsRadio TechniqueFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysicsradio emissionCIENCIAS NATURALES Y EXACTASRadio wave[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsPhysics and Astronomy (all)0103 physical sciencesextensive air showersHigh Energy Physicsultra-high energy cosmic rays extensive air showers radio emission010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger Observatory010308 nuclear & particles physicsRadiant energyFísicaLOFAR//purl.org/becyt/ford/1.3 [https]LOFARASTROFÍSICASIMULATIONSComputational physicsAstronomíaCOREASExperimental High Energy PhysicsARRAYEMISSION SIMULATIONS LOFAR.EMISSION
researchProduct

IceTop : the surface component of IceCube

2012

IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an …

FLUXNuclear and High Energy PhysicsAir showerPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAir shower; Cosmic rays; Detector; IceCube; IceTopFOS: Physical sciencesCosmic rayddc:500.27. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubeShowerData acquisitioncosmic raysDIGITIZATION0103 physical sciencesSHOWERSCalibrationddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysRemote sensingPhysicsMuondetector010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyDetectorENERGY-SPECTRUMAir showerPhysics and AstronomySIMULATIONIceTopHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Measurement of South Pole ice transparency with the IceCube LED calibration system

2013

The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsSouth Pole icePhoton progagationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubePhysics::GeophysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesCalibrationddc:53014. Life underwater010306 general physicsAbsorption (electromagnetic radiation)InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationRemote sensingPhysicsOptical properties010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for AstrophysicsIceCube; Optical properties; Photon propagation; South Pole iceSouth PoleiceInstrumentation and Detectors (physics.ins-det)Charged particleData setPhoton propagationAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

2010

A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon ne…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesDeep IceSouth-PoleHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)ddc:530Muon neutrinoNeutrino oscillationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)FluxHigh Energy Physics::PhenomenologyOptical-PropertiesDetectorSolar neutrino problemHigh Energy Physics - PhenomenologyNeutrino detectorMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaTelescopesPhys.Rev.D
researchProduct

Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope

2020

Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomy01 natural sciences030218 nuclear medicine & medical imaginglaw.invention0302 clinical medicinelawObservatoryatmosphere [muon]Instrumentationphysics.ins-detMathematical PhysicsLarge detector-systems performancePhysicsInstrumentation et méthodes en physiquePerformance of high energy physics detectorsData reduction methods; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of high energy physics detectorsDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsresistive plate chamberInstrumentation and Detectors (physics.ins-det)trajectory [muon]Augerobservatorymuon: atmosphereAstrophysics - Instrumentation and Methods for AstrophysicsData reduction methodsatmosphere [showers]Cherenkov detectorairCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raymuon: trajectoryNuclear physics03 medical and health sciencesHodoscopeData reduction method0103 physical sciencesCalibrationHigh Energy Physicsddc:610cosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]hodoscopeFísicaAutres mathématiquesstabilitycalibrationData reduction methods Large detector systems for particle and astroparticle physics Large detector-systems performance Performance of High Energy Physics DetectorsExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentRAIOS CÓSMICOSastro-ph.IM
researchProduct

Search for ultrahigh-energy tau neutrinos with IceCube

2012

The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25  km3. The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60±0.19(stat)+0.56−0.58(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E2νΦ90(νx)&lt;16.3×10−8  GeV cm−2…

SELECTIONAMANDANuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESCosmic rayddc:500.2PROPAGATIONAstrophysicsElectron01 natural sciencesAmanda0103 physical sciencesEARTHddc:530Ultrahigh energy010306 general physicsPropagationSelectionPhysicsRange (particle radiation)Muon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsEarthPhysics and AstronomyInduced CascadesTELESCOPESHigh Energy Physics::ExperimentNeutrinoTelescopes
researchProduct

Search for neutrino-induced cascades with five years of AMANDA data

2010

Contains fulltext : 97339.pdf (Publisher’s version ) (Closed access) We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E(-2) is less than 5.0 x…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHadronFluxCosmic rayContext (language use)Cascades; NeutrinosAstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Cascades0103 physical sciencesNeutrinos010306 general physicsPhysicsFluxMuon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyAstronomy and AstrophysicsCosmic-RaysNucleiHigh-Energy NeutrinosNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoNeutrino astronomy
researchProduct

Features of the Energy Spectrum of Cosmic Rays above 2.5×10$^{18}$ eV Using the Pierre Auger Observatory

2020

We report a measurement of the energy spectrum of cosmic rays above $2.5{\times} 10^{18}$ eV based on $215,030$ events. New results are presented: at about $1.3{\times} 10^{19}$ eV, the spectral index changes from $2.51 \pm 0.03 \textrm{ (stat.)} \pm 0.05 \textrm{ (sys.)}$ to $3.05 \pm 0.05 \textrm{ (stat.)}\pm 0.10\textrm{ (sys.)}$, evolving to $5.1\pm0.3\textrm{ (stat.)} \pm 0.1\textrm{ (sys.)}$ beyond $5{\times} 10^{19}$ eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above $5{\times} 10^{18}$ eV …

FOS: Physical sciencespower spectrumGravitation and Astrophysics7. Clean energy01 natural sciences530energy dependencemass spectrumcosmic ray; astroparticle detectors; cosmic ray spectracosmic ray spectraastroparticle detectors5/30103 physical sciencesddc:530energy: densityUHE Cosmic Rays010303 astronomy & astrophysicscosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)Ultra-high energy cosmic rays energy spectrum astrophysical implications Cherenkov detectorscosmic radiation: energy spectrum010308 nuclear & particles physicsPhysicsAugerobservatoryEnergy SpectrumspectralAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]energy spectrum [cosmic radiation]density [energy]
researchProduct

Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector

2012

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent s…

Particle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesGeneral Physics and AstronomyCosmic rayddc:500.2MASSIVE PARTICLESAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)LIMITSWIMP0103 physical sciencesddc:550010306 general physicsLight dark matterCANDIDATESHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsCONSTRAINTSCAPTURENEUTRINOSPhysics and AstronomyNeutrino detector13. Climate actionWeakly interacting massive particlesHigh Energy Physics::ExperimentCryogenic Dark Matter SearchNeutrinoAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct