Search results for " Knockout"

showing 10 items of 764 documents

RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation

2018

Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2δGFAPmice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results…

0301 basic medicinelcsh:Immunologic diseases. AllergyMaleEncephalomyelitis Autoimmune ExperimentalAicardi–Goutières syndromeRNase PDNA damageImmunologyRibonuclease HFluorescent Antibody TechniqueAicardi-goutières Syndrome ; Cellular Senescence ; Dna Damage ; Interferon Signature ; Rnase H2BiologyNervous System MalformationsAutoimmune Diseases03 medical and health sciencesMiceAutoimmune Diseases of the Nervous SystemNucleic AcidsmedicineImmunology and Allergycellular senescenceAnimalsRibonucleaseNeuroinflammationCells CulturedOriginal ResearchInflammationMice KnockoutInnate immune systemBrainmedicine.diseaseMolecular biologyImmunohistochemistryDisease Models Animal030104 developmental biologymedicine.anatomical_structurePhenotypeinterferon signatureAstrocytesKnockout mousebiology.proteinAicardi–Goutières syndromeDNA damageFemalelcsh:RC581-607RNase H2BiomarkersAstrocyteFrontiers in Immunology
researchProduct

The Unfolded Protein Response Plays a Predominant Homeostatic Role in Response to Mitochondrial Stress in Pancreatic Stellate Cells.

2016

Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary a…

0301 basic medicinelcsh:MedicineApoptosisMitochondrionAMP-Activated Protein KinasesEndoplasmic ReticulumBiochemistrychemistry.chemical_compoundMiceeIF-2 KinasePhosphatidylinositol 3-Kinases0302 clinical medicineFluorescence MicroscopyCell SignalingTumor Microenvironment2.1 Biological and endogenous factorsSmall interfering RNAsAetiologylcsh:ScienceEnergy-Producing OrganellesCancerMice KnockoutMicroscopyMultidisciplinarySecretory PathwayCell DeathTOR Serine-Threonine KinasesLight MicroscopySignaling CascadesCell biologyMitochondriaNeoplasm ProteinsUp-RegulationNucleic acidsCell Processes030220 oncology & carcinogenesisCellular Structures and OrganellesResearch ArticleSignal TransductionProgrammed cell deathCell PhysiologyGeneral Science & TechnologyAutophagic Cell DeathKnockoutBiologyBioenergeticsResearch and Analysis MethodsStress Signaling Cascade03 medical and health sciencesGeneticsAutophagyAnimalsNon-coding RNAPancreasPI3K/AKT/mTOR pathwaylcsh:RAutophagyAMPKBiology and Life SciencesCell BiologyCell MetabolismGene regulationPancreatic NeoplasmsEnzyme Activation030104 developmental biologychemistryHepatic stellate cellUnfolded protein responseUnfolded Protein ResponseRNAlcsh:QGene expressionInterleukin-4Digestive DiseasesRottlerinTranscription Factor CHOP
researchProduct

TLR2 modulates gut colonization and dissemination of Candida albicans in a murine model

2016

Invasive candidiasis often arises from translocation of endogenous yeasts from the gastrointestinal tract to the bloodstream. Here we describe that both wild type and TLR2−/− mice strains, orally administered with Candida albicans yeasts, display similar sustained high level of gut colonization when oral antibacterial treatment is present, while removal of antibiotic treatment causes a progressive clearance of yeasts in control but not in TLR2−/− mice. Fungal invasion of internal organs, following immunosuppression of colonized mice, was increased in TLR2−/− mice. These results point out to a role of TLR2 in gut protection against colonization and endogenous invasion by C. albicans. This wo…

0301 basic medicinemedicine.drug_classFarmacología030106 microbiologyImmunologyAntibioticsEndogenyGut colonizationMicrobiologyMicrobiology03 medical and health sciencesImmunosuppressed miceCandida albicansmedicineTLR2AnimalsCandidiasis InvasiveColonizationCandida albicansMice KnockoutGastrointestinal tractbiologyWild typebiology.organism_classificationToll-Like Receptor 2Corpus albicansGastrointestinal TractMice Inbred C57BLTLR2030104 developmental biologyInfectious DiseasesImmunologyDisease SusceptibilityMicrobes and Infection
researchProduct

Novel anti-GARP antibody DS-1055a augments anti-tumor immunity by depleting highly suppressive GARP+ regulatory T cells

2021

Abstract Regulatory T (Treg) cells, which are essential for maintaining self-tolerance, inhibit anti-tumor immunity, consequently hindering protective cancer immunosurveillance, and hampering effective anti-tumor immune responses in tumor-bearing hosts. Here, we show that depletion of Treg cells via targeting glycoprotein A repetitions predominant (GARP) induces effective anti-tumor immune responses. GARP was specifically expressed by highly suppressive Treg cells in the tumor microenvironment (TME) of multiple cancer types in humans. In the periphery, GARP was selectively induced in Treg cells, but not in effector T cells, by polyclonal stimulation. DS-1055a, a novel afucosylated anti-huma…

0301 basic medicinemedicine.drug_classmedicine.medical_treatmentImmunologychemical and pharmacologic phenomenaMice SCIDBiologyMonoclonal antibodyT-Lymphocytes RegulatoryMice03 medical and health sciences0302 clinical medicineImmune systemCancer immunotherapyMice Inbred NODImmunityNeoplasmsImmune ToleranceTumor MicroenvironmentmedicineAnimalsHumansImmunology and AllergyMice KnockoutTumor microenvironmentImmunityAntibodies MonoclonalMembrane ProteinsFOXP3General MedicineImmunosurveillance030104 developmental biology030220 oncology & carcinogenesisLeukocytes MononuclearCancer researchbiology.proteinFemaleImmunotherapyAntibodyInternational Immunology
researchProduct

Macrophage protease-activated receptor 2 regulates fetal liver erythropoiesis in mice.

2020

AbstractDeficiencies in many coagulation factors and protease-activated receptors (PARs) affect embryonic development. We describe a defect in definitive erythropoiesis in PAR2-deficient mice. Embryonic PAR2 deficiency increases embryonic death associated with variably severe anemia in comparison with PAR2-expressing embryos. PAR2-deficient fetal livers display reduced macrophage densities, erythroblastic island areas, and messenger RNA expression levels of markers for erythropoiesis and macrophages. Coagulation factor synthesis in the liver coincides with expanding fetal liver hematopoiesis during midgestation, and embryonic factor VII (FVII) deficiency impairs liver macrophage development…

0301 basic medicinemedicine.medical_specialtyBiologyThrombosis and Hemostasis03 medical and health sciencesMice0302 clinical medicineHepcidinInternal medicinemedicineMacrophageAnimalsReceptor PAR-2ErythropoiesisProtease-activated receptor 2Mice KnockoutFetusMacrophagesHematologymedicine.diseaseHemolysisHaematopoiesis030104 developmental biologyEndocrinologymedicine.anatomical_structureLiver030220 oncology & carcinogenesisbiology.proteinErythropoiesisBone marrowBlood advances
researchProduct

Diacylglycerol lipase alpha in astrocytes is involved in maternal care and affective behaviors.

2021

Genetic deletion of cannabinoid CB1 receptors or diacylglycerol lipase alpha (DAGLa), the main enzyme involved in the synthesis of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG), produced profound phenotypes in animal models of depression-related behaviors. Furthermore, clinical studies have shown that antagonists of CB1 can increase the incidence and severity of major depressive episodes. However, the underlying pathomechanisms are largely unknown. In this study, we have focused on the possible involvement of astrocytes. Using the highly sensitive RNAscope technology, we show for the first time that a subpopulation of astrocytes in the adult mouse brain expresses Dagla, albeit at …

0301 basic medicinemedicine.medical_specialtyCannabinoid receptormedicine.medical_treatment2-Arachidonoylglycerol610 Medicine & healthBiology03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compoundMice0302 clinical medicineReceptor Cannabinoid CB1Internal medicineTripartite synapseLipidomicsmedicineAnimalsReceptorMice KnockoutDepressive Disorder MajorEndocannabinoid system3. Good healthLipoprotein Lipase030104 developmental biologyEndocrinologyNeurologychemistryAstrocytes570 Life sciences; biologylipids (amino acids peptides and proteins)Arachidonic acidFemaleCannabinoid030217 neurology & neurosurgeryEndocannabinoidsGliaREFERENCES
researchProduct

Loss of c-Met signaling sensitizes hepatocytes to lipotoxicity and induces cholestatic liver damage by aggravating oxidative stress.

2016

Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30days as evidenced by upregulation of liver enz…

0301 basic medicinemedicine.medical_specialtyCell SurvivalCholestasis IntrahepaticBiologyToxicologymedicine.disease_causeArticleCholesterol Dietary03 medical and health sciencesMice0302 clinical medicineLiver Function TestsInternal medicinemedicineAnimalsLiver X receptorLiver injuryMice Knockoutmedicine.diagnostic_testLipid metabolismProto-Oncogene Proteins c-metmedicine.diseaseLipid MetabolismGlutathioneLipidsLiver regenerationOxidative Stress030104 developmental biologyEndocrinologyLipotoxicity030220 oncology & carcinogenesisHepatocytesLipid PeroxidationSteatosisLiver function testsOxidative stressSignal TransductionToxicology
researchProduct

Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

2017

Abstract Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1−/−) mice and PRG-1/LPA2–receptor double knockout (PRG-1−/−/LPA2−/−)…

0301 basic medicinemedicine.medical_specialtyGlutamic AcidNerve Tissue ProteinsBiologyHyperkinesisHippocampusOpen field03 medical and health sciencesBehavioral NeuroscienceGlutamatergicchemistry.chemical_compoundMice0302 clinical medicineLysophosphatidic acidmedicineAnimalsReceptors Lysophosphatidic AcidPsychiatryMice KnockoutNeuronsMental DisordersGlutamate receptorSomatosensory CortexMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurechemistrySynapsesExploratory BehaviorGABAergicCalmodulin-Binding ProteinsFemaleNeuronSignal transductionLysophospholipidsPostsynaptic density030217 neurology & neurosurgerySignal TransductionBehavioural brain research
researchProduct

Genetic inactivation of the sigma-1 chaperone protein results in decreased expression of the R2 subunit of the GABA-B receptor and increased suscepti…

2021

There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated. The aim of this study was to compare the susceptibility to seizures of wild type (WT) and Sig1R knockout (Sig1R−/−) mice in intravenous pentylenetetrazol (PTZ) and (+)-bicuculline (BIC) infusion-induced acute seizure and Sig1R antagonist NE-100-induced seizure models. To determine pos…

0301 basic medicinemedicine.medical_specialtyKnockoutGene ExpressionNitric Oxide Synthase Type IISigma-1 receptorConvulsantsAnisolesSigma-1 receptor Knockout GABA-B receptor Seizures Medial habenula NE-100BicucullineHippocampuslcsh:RC321-571Mice03 medical and health sciences0302 clinical medicineDownregulation and upregulationSeizuresInternal medicineGene expressionmedicineAnimalsReceptors sigmaGABA-B receptorGenetic Predisposition to DiseasePentylenetetrazolReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMice KnockoutHabenulaSigma-1 receptorPropylaminesSeizure thresholdChemistryMedial habenulaWild typeAntagonistReceptors GABA-A030104 developmental biologyEndocrinologyReceptors GABA-BNeurologyNE-100Pentylenetetrazole030217 neurology & neurosurgerymedicine.drugNeurobiology of Disease
researchProduct

NT-3 protein levels are enhanced in the hippocampus of PRG1-deficient mice but remain unchanged in PRG1/LPA2 double mutants

2015

The plasticity-related gene 1 (PRG1) modulates bioactive lipids at the postsynaptic density and is a novel player in neuronal plasticity and regulation of glutamatergic transmission at principal neurons. PRG1, a neuronal molecule, is highly expressed during development and regeneration processes at the postsynaptic density, modulates synaptic lysophosphatidic acid (LPA) levels and is related to epilepsy and brain injury. In the present study, we analyzed the interaction between the synaptic molecules PRG1 and LPA2R with other plasticity-related molecules the neurotrophins. The protein levels of NGF, BDNF and NT-3 were measured using ELISA in hippocampal tissue of homozygous (PRG(-/-)) and h…

0301 basic medicinemedicine.medical_specialtyPhosphatidate PhosphataseHippocampusHippocampal formationHippocampusMice03 medical and health sciences0302 clinical medicineNeurotrophic factorsInternal medicineNerve Growth FactormedicineAnimalsNerve Growth FactorsReceptors Lysophosphatidic AcidMice KnockoutBrain-derived neurotrophic factorbiologyBrain-Derived Neurotrophic FactorGeneral NeuroscienceWild typeMice Mutant Strains030104 developmental biologyNerve growth factorEndocrinologynervous systemBiochemistrySynapsesbiology.proteinPostsynaptic density030217 neurology & neurosurgeryNeurotrophinNeuroscience Letters
researchProduct