Search results for " LEARNING"
showing 10 items of 5299 documents
Using Inverse Reinforcement Learning with Real Trajectories to Get More Trustworthy Pedestrian Simulations
2020
Reinforcement learning is one of the most promising machine learning techniques to get intelligent behaviors for embodied agents in simulations. The output of the classic Temporal Difference family of Reinforcement Learning algorithms adopts the form of a value function expressed as a numeric table or a function approximator. The learned behavior is then derived using a greedy policy with respect to this value function. Nevertheless, sometimes the learned policy does not meet expectations, and the task of authoring is difficult and unsafe because the modification of one value or parameter in the learned value function has unpredictable consequences in the space of the policies it represents…
Variable neighborhood descent for the incremental graph drawing
2017
Abstract Graphs are used to represent reality in several areas of knowledge. Drawings of graphs have many applications, from project scheduling to software diagrams. The main quality desired for drawings of graphs is readability, and crossing reduction is a fundamental aesthetic criterion for a good representation of a graph. In this paper we target the edge crossing reduction in the context of incremental graph drawing, in which we want to preserve the layout of a graph over successive drawings. We propose a hybrid method based on the GRASP (Greedy Randomized Adaptive Search Procedure) and VND (Variable Neighborhood Descent) methodologies and compare it with previous methods via simulation.
Kick Detection and Influx Size Estimation during Offshore Drilling Operations using Deep Learning
2019
An uncontrolled or unobserved influx or kick during drilling has the potential to induce a well blowout, one of the most harmful incidences during drilling both in regards to economic and environmental cost. Since kicks during drilling are serious risks, it is important to improve kick and loss detection performance and capabilities and to develop automatic flux detection methodology. There are clear patterns during a influx incident. However, due to complex processes and sparse instrumentation it is difficult to predict the behaviour of kicks or losses based on sensor data combined with physical models alone. Emerging technologies within Deep Learning are however quite adapt at picking up …
ES1D: A Deep Network for EEG-Based Subject Identification
2017
Security systems are starting to meet new technologies and new machine learning techniques, and a variety of methods to identify individuals from physiological signals have been developed. In this paper, we present ESID, a deep learning approach to identify subjects from electroencephalogram (EEG) signals captured by using a low cost device. The system consists of a Convolutional Neural Network (CNN), which is fed with the power spectral density of different EEG recordings belonging to different individuals. The network is trained for a period of one million iterations, in order to learn features related to local patterns in the spectral domain of the original signal. The performance of the…
Intelligence artificielle : quel avenir en anatomie pathologique ?
2019
Resume Les techniques d’intelligence artificielle et en particulier les reseaux de neurones profonds (Deep Learning) sont en pleine emergence dans le domaine biomedical. Les reseaux de neurones s’inspirent du modele biologique, ils sont interconnectes entre eux et suivent des modeles mathematiques. Lors de l’utilisation des reseaux de neurones artificiels, deux phases sont necessaires : une phase d’apprentissage et une phase d’exploitation. Les deux principales applications sont la classification et la regression. Des outils informatiques comme les processeurs graphiques accelerateurs de calcul ou des bibliotheques de developpement specifiques ont donne un nouveau souffle a ces techniques. …
Assessment of tumor-infiltrating TCRV γ 9V δ 2 γδ lymphocyte abundance by deconvolution of human cancers microarrays
2017
Most human blood γδ cells are cytolytic TCRVγ9Vδ2+lymphocytes with antitumor activity. They are currently investigated in several clinical trials of cancer immunotherapy but so far, their tumor infiltration has not been systematically explored across human cancers. Novel algorithms allowing the deconvolution of bulk tumor transcriptomes to find the relative proportions of infiltrating leucocytes, such as CIBERSORT, should be appropriate for this aim but in practice they fail to accurately recognize γδ T lymphocytes. Here, by implementing machine learning from microarray data, we first improved the computational identification of blood-derived TCRVγ9Vδ2+γδ lymphocytes and then appl…
Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms
2020
Author(s): Christopher, Mark; Nakahara, Kenichi; Bowd, Christopher; Proudfoot, James A; Belghith, Akram; Goldbaum, Michael H; Rezapour, Jasmin; Weinreb, Robert N; Fazio, Massimo A; Girkin, Christopher A; Liebmann, Jeffrey M; De Moraes, Gustavo; Murata, Hiroshi; Tokumo, Kana; Shibata, Naoto; Fujino, Yuri; Matsuura, Masato; Kiuchi, Yoshiaki; Tanito, Masaki; Asaoka, Ryo; Zangwill, Linda M | Abstract: PurposeTo compare performance of independently developed deep learning algorithms for detecting glaucoma from fundus photographs and to evaluate strategies for incorporating new data into models.MethodsTwo fundus photograph datasets from the Diagnostic Innovations in Glaucoma Study/African Descent…
Clearing Amyloid-β through PPARγ/ApoE Activation by Genistein is a Treatment of Experimental Alzheimer’s Disease
2016
Amyloid-b (Ab) clearance from brain, which is decreased in Alzheimer's disease, is facilitated by apolipoprotein E (ApoE). ApoE is upregulated by activation of the retinoid X receptor moiety of the RXR/PPAR dimeric receptor. As we have previously demonstrated, estrogenic compounds, such as genistein, have antioxidant activity, which can be evidenced by increased expression of manganese superoxide dismutase (MnSOD). Furthermore, genistein is a non-toxic, well-tested, and inexpensive drug that activates PPARg receptor. We isolated and cultured cortical astrocytes from dissected cerebral cortices of neonatal mice (C57BL/6 J). Preincubation with genistein (5 mM) for 24 hours, prior to the addit…
Risk Assessment of Hip Fracture Based on Machine Learning
2020
[EN] Identifying patients with high risk of hip fracture is a great challenge in osteoporosis clinical assessment. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold standard in osteoporosis clinical assessment. However, its classification accuracy is only around 65%. In order to improve this accuracy, this paper proposes the use of Machine Learning (ML) models trained with data from a biomechanical model that simulates a sideways-fall. Machine Learning (ML) models are models able to learn and to make predictions from data. During a training process, ML models learn a function that maps inputs and outputs without previous knowledge of the probl…
Exceptional Pattern Discovery
2017
This chapter is devoted to a discussion on exceptional pattern discovery, namely on scenarios, contexts, and techniques concerning the mining of patterns which are so rare or so frequent to be considered as exceptional and, then, of interest for an expert to shed lights on the domain. Frequent patterns have found broad applications in areas like association rule mining, indexing, and clustering [1, 20, 23]. The application of frequent patterns in classification also achieved some success in the classification of relational data [6, 13, 14, 19, 25], text [15], and graphs [7]. The part is organized as follows. First, the frequent pattern mining on classical datasets is presented. This is not …