Search results for " Machine Learning"

showing 10 items of 300 documents

Improving prostate whole gland segmentation in t2-weighted MRI with synthetically generated data

2021

Whole gland (WG) segmentation of the prostate plays a crucial role in detection, staging and treatment planning of prostate cancer (PCa). Despite promise shown by deep learning (DL) methods, they rely on the availability of a considerable amount of annotated data. Augmentation techniques such as translation and rotation of images present an alternative to increase data availability. Nevertheless, the amount of information provided by the transformed data is limited due to the correlation between the generated data and the original. Based on the recent success of generative adversarial networks (GAN) in producing synthetic images for other domains as well as in the medical domain, we present…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePipeline (computing)Computer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology030218 nuclear medicine & medical imagingMachine Learning (cs.LG)03 medical and health sciencesProstate cancer0302 clinical medicineProstate020204 information systems0202 electrical engineering electronic engineering information engineeringmedicineFOS: Electrical engineering electronic engineering information engineeringSegmentationbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionImage segmentationElectrical Engineering and Systems Science - Image and Video Processingmedicine.diseaseData availabilitymedicine.anatomical_structureArtificial intelligencebusinessT2 weighted
researchProduct

Accounting for Input Noise in Gaussian Process Parameter Retrieval

2020

Gaussian processes (GPs) are a class of Kernel methods that have shown to be very useful in geoscience and remote sensing applications for parameter retrieval, model inversion, and emulation. They are widely used because they are simple, flexible, and provide accurate estimates. GPs are based on a Bayesian statistical framework which provides a posterior probability function for each estimation. Therefore, besides the usual prediction (given in this case by the mean function), GPs come equipped with the possibility to obtain a predictive variance (i.e., error bars, confidence intervals) for each prediction. Unfortunately, the GP formulation usually assumes that there is no noise in the inpu…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePosterior probability0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologyMachine Learning (cs.LG)symbols.namesakeStatistics - Machine LearningElectrical and Electronic EngineeringGaussian process021101 geological & geomatics engineeringPropagation of uncertaintyNoise measurementbusiness.industryFunction (mathematics)Geotechnical Engineering and Engineering GeologySea surface temperatureNoiseKernel methodsymbolsGlobal Positioning SystemErrors-in-variables modelsbusinessAlgorithmIEEE Geoscience and Remote Sensing Letters
researchProduct

Group Importance Sampling for particle filtering and MCMC

2018

Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discus…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePosterior probabilityMonte Carlo methodMachine Learning (stat.ML)02 engineering and technologyMultiple-try MetropolisStatistics - Computation01 natural sciencesMachine Learning (cs.LG)Computational Engineering Finance and Science (cs.CE)Methodology (stat.ME)010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingStatistics - Machine LearningArtificial IntelligenceResampling0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringComputer Science - Computational Engineering Finance and ScienceStatistics - MethodologyComputation (stat.CO)ComputingMilieux_MISCELLANEOUSMarkov chainApplied Mathematics020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputational Theory and MathematicsSignal ProcessingsymbolsComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyParticle filter[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithmImportance samplingDigital Signal Processing
researchProduct

Deep Learning Based Cardiac MRI Segmentation: Do We Need Experts?

2021

Deep learning methods are the de facto solutions to a multitude of medical image analysis tasks. Cardiac MRI segmentation is one such application, which, like many others, requires a large number of annotated data so that a trained network can generalize well. Unfortunately, the process of having a large number of manually curated images by medical experts is both slow and utterly expensive. In this paper, we set out to explore whether expert knowledge is a strict requirement for the creation of annotated data sets on which machine learning can successfully be trained. To do so, we gauged the performance of three segmentation models, namely U-Net, Attention U-Net, and ENet, trained with dif…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceProcess (engineering)GeneralizationIndustrial engineering. Management engineeringComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognitionheartannotated data setT55.4-60.8Machine learningcomputer.software_genre030218 nuclear medicine & medical imagingTheoretical Computer ScienceMachine Learning (cs.LG)Set (abstract data type)03 medical and health sciences0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringSegmentationNumerical AnalysisArtificial neural networkbusiness.industryDeep learningsegmentationImage and Video Processing (eess.IV)deep learningQA75.5-76.95Electrical Engineering and Systems Science - Image and Video ProcessingComputational MathematicsHausdorff distanceComputational Theory and MathematicsIndex (publishing)Electronic computers. Computer scienceArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryMRI
researchProduct

Mislabel Detection of Finnish Publication Ranks

2019

The paper proposes to analyze a data set of Finnish ranks of academic publication channels with Extreme Learning Machine (ELM). The purpose is to introduce and test recently proposed ELM-based mislabel detection approach with a rich set of features characterizing a publication channel. We will compare the architecture, accuracy, and, especially, the set of detected mislabels of the ELM-based approach to the corresponding reference results on the reference paper.

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencerankinglistatMachine Learning (stat.ML)computer.software_genreMachine Learning (cs.LG)Set (abstract data type)Statistics - Machine LearningDigital Libraries (cs.DL)julkaisukanavatvirheanalyysimislabel detectionExtreme learning machineExtreme Learning Machine (ELM)publication channelsComputer Science - Digital LibrariesData setkoneoppiminendataData miningrankingsarviointicomputertieteellinen julkaisutoimintaCommunication channel
researchProduct

Neural Networks, Inside Out: Solving for Inputs Given Parameters (A Preliminary Investigation)

2021

Artificial neural network (ANN) is a supervised learning algorithm, where parameters are learned by several back-and-forth iterations of passing the inputs through the network, comparing the output with the expected labels, and correcting the parameters. Inspired by a recent work of Boer and Kramer (2020), we investigate a different problem: Suppose an observer can view how the ANN parameters evolve over many iterations, but the dataset is oblivious to him. For instance, this can be an adversary eavesdropping on a multi-party computation of an ANN parameters (where intermediate parameters are leaked). Can he form a system of equations, and solve it to recover the dataset?

FOS: Computer and information sciencesComputer Science - Machine LearningComputingMethodologies_PATTERNRECOGNITIONComputer Science - Cryptography and SecurityComputer Science::Neural and Evolutionary ComputationFOS: MathematicsNumerical Analysis (math.NA)Mathematics - Numerical AnalysisCryptography and Security (cs.CR)Computer Science::DatabasesMachine Learning (cs.LG)Computer Science::Cryptography and Security
researchProduct

Integrating Domain Knowledge in Data-Driven Earth Observation With Process Convolutions

2022

The modelling of Earth observation data is a challenging problem, typically approached by either purely mechanistic or purely data-driven methods. Mechanistic models encode the domain knowledge and physical rules governing the system. Such models, however, need the correct specification of all interactions between variables in the problem and the appropriate parameterization is a challenge in itself. On the other hand, machine learning approaches are flexible data-driven tools, able to approximate arbitrarily complex functions, but lack interpretability and struggle when data is scarce or in extrapolation regimes. In this paper, we argue that hybrid learning schemes that combine both approa…

FOS: Computer and information sciencesComputer Science - Machine LearningEarth observationAdvanced microwave scanning radiometer-2 (AMSR-2)moderate resolution imaging spectroradiometer (MODIS)Computer scienceleaf area index (LAI)0211 other engineering and technologiesExtrapolationMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Data-drivenConvolutionsymbols.namesakeadvanced scatterometer (ASCAT)Statistics - Machine Learningordinary differential equation (ODE)Electrical and Electronic EngineeringGaussian processsoil moisture and ocean salinity (SMOS)021101 geological & geomatics engineeringInterpretabilityForcing (recursion theory)machine learning (ML)soil moisture (SM)time series analysisgaussian process (GP)symbolsGeneral Earth and Planetary SciencesDomain knowledgeData mininggap fillingphysicscomputerfraction of absorbed photosynthetically active radiation (faPAR)IEEE Transactions on Geoscience and Remote Sensing
researchProduct

A perspective on Gaussian processes for Earth observation

2019

Earth observation (EO) by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet. In the last decade, machine learning and Gaussian processes (GPs) in particular has attained outstanding results in the estimation of bio-geo-physical variables from the acquired images at local and global scales in a time-resolved manner. GPs provide not only accurate estimates but also principled uncertainty estimates for the predictions, can easily accommodate multimodal data coming from different sensors and from multitemporal acquisitions, allow the introduction of physical knowledge, and a formal treatment of uncertainty quantification and error pr…

FOS: Computer and information sciencesComputer Science - Machine LearningEarth observationComputer scienceDatenmanagement und AnalyseMachine Learning (stat.ML)02 engineering and technology010402 general chemistrycomputer.software_genreStatistics - Applications01 natural sciencesMachine Learning (cs.LG)symbols.namesakeStatistics - Machine LearningApplications (stat.AP)Uncertainty quantificationGaussian processPhysical lawPropagation of uncertaintyMultidisciplinarybusiness.industryPerspective (graphical)gaussian processes021001 nanoscience & nanotechnology0104 chemical sciences13. Climate actionCausal inferenceComputer ScienceGlobal Positioning SystemsymbolsData mining0210 nano-technologybusinesscomputerPerspectivesNational Science Review
researchProduct

Machine learning-based spin structure detection

2023

One of the most important magnetic spin structure is the topologically stabilised skyrmion quasi-particle. Its interesting physical properties make them candidates for memory and efficient neuromorphic computation schemes. For the device operation, detection of the position, shape, and size of skyrmions is required and magnetic imaging is typically employed. A frequently used technique is magneto-optical Kerr microscopy where depending on the samples material composition, temperature, material growing procedures, etc., the measurements suffer from noise, low-contrast, intensity gradients, or other optical artifacts. Conventional image analysis packages require manual treatment, and a more a…

FOS: Computer and information sciencesComputer Science - Machine LearningEmerging Technologies (cs.ET)Physics - Data Analysis Statistics and ProbabilityComputer Science - Emerging TechnologiesFOS: Physical sciencesData Analysis Statistics and Probability (physics.data-an)Machine Learning (cs.LG)
researchProduct

Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization With Medical Applications

2019

Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled tex…

FOS: Computer and information sciencesComputer Science - Machine LearningGeneral Computer ScienceComputer sciencetext categorizationNatural language understandingDecision treeMachine Learning (stat.ML)02 engineering and technologyVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559Machine learningcomputer.software_genresupervised learningMachine Learning (cs.LG)Naive Bayes classifierText miningStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTsetlin machinehealth informaticsInterpretabilityPropositional variableClassification algorithmsArtificial neural networkbusiness.industryDeep learning020208 electrical & electronic engineeringGeneral EngineeringRandom forestSupport vector machinemachine learningCategorization020201 artificial intelligence & image processingArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinessPrecision and recallcomputerlcsh:TK1-9971
researchProduct