Search results for " Machine Learning"
showing 10 items of 300 documents
Brima: Low-Overhead Browser-Only Image Annotation Tool (Preprint)
2021
Image annotation and large annotated datasets are crucial parts within the Computer Vision and Artificial Intelligence this http URL the same time, it is well-known and acknowledged by the research community that the image annotation process is challenging, time-consuming and hard to scale. Therefore, the researchers and practitioners are always seeking ways to perform the annotations easier, faster, and at higher quality. Even though several widely used tools exist and the tools' landscape evolved considerably, most of the tools still require intricate technical setups and high levels of technical savviness from its operators and crowdsource contributors. In order to address such challenge…
A General Framework for Complex Network-Based Image Segmentation
2019
International audience; With the recent advances in complex networks theory, graph-based techniques for image segmentation has attracted great attention recently. In order to segment the image into meaningful connected components, this paper proposes an image segmentation general framework using complex networks based community detection algorithms. If we consider regions as communities, using community detection algorithms directly can lead to an over-segmented image. To address this problem, we start by splitting the image into small regions using an initial segmentation. The obtained regions are used for building the complex network. To produce meaningful connected components and detect …
Architettura e second digital turn, l’evoluzione degli strumenti informatici e il progetto
2021
La condizione digitale che ha gradualmente ibridato le nostre esistenze, trasformando atomi in bit, si è oggi cementificata sulla nostra società, arricchendone la postmodernità e determinando una nuova liquidità acuitasi con l’avvento di internet. Un momento storico segnato da una nuova maturità del digitale, evidente nel nostro diverso rapporto con i dati, e nella diffusione di metodi di machine learning avanzato, che promettono una nuova capacità di comprensione della complessità contemporanea e nel frattempo contribuiscono alla propagazione dell’apparato tecnico sul mondo. Questi cambiamenti, tanto profondi da toccare la nostra cultura, stanno modificando il nostro modo di interpretare e…
Ignorance-Aware Approaches and Algorithms for Prototype Selection in Machine Learning
2019
Operating with ignorance is an important concern of the Machine Learning research, especially when the objective is to discover knowledge from the imperfect data. Data mining (driven by appropriate knowledge discovery tools) is about processing available (observed, known and understood) samples of data aiming to build a model (e.g., a classifier) to handle data samples, which are not yet observed, known or understood. These tools traditionally take samples of the available data (known facts) as an input for learning. We want to challenge the indispensability of this approach and we suggest considering the things the other way around. What if the task would be as follows: how to learn a mode…
Countering Adversarial Inference Evasion Attacks Towards ML-Based Smart Lock in Cyber-Physical System Context
2021
Machine Learning (ML) has been taking significant evolutionary steps and provided sophisticated means in developing novel and smart, up-to-date applications. However, the development has also brought new types of hazards into the daylight that can have even destructive consequences required to be addressed. Evasion attacks are among the most utilized attacks that can be generated in adversarial settings during the system operation. In assumption, ML environment is benign, but in reality, perpetrators may exploit vulnerabilities to conduct these gradient-free or gradient-based malicious adversarial inference attacks towards cyber-physical systems (CPS), such as smart buildings. Evasion attac…
Predicting overweight and obesity in later life from childhood data: A review of predictive modeling approaches
2019
Background: Overweight and obesity are an increasing phenomenon worldwide. Predicting future overweight or obesity early in the childhood reliably could enable a successful intervention by experts. While a lot of research has been done using explanatory modeling methods, capability of machine learning, and predictive modeling, in particular, remain mainly unexplored. In predictive modeling models are validated with previously unseen examples, giving a more accurate estimate of their performance and generalization ability in real-life scenarios. Objective: To find and review existing overweight or obesity research from the perspective of employing childhood data and predictive modeling metho…
Local Granger causality
2021
Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …
The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems
2019
The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and n…
RotNet: Fast and Scalable Estimation of Stellar Rotation Periods Using Convolutional Neural Networks
2020
Magnetic activity in stars manifests as dark spots on their surfaces that modulate the brightness observed by telescopes. These light curves contain important information on stellar rotation. However, the accurate estimation of rotation periods is computationally expensive due to scarce ground truth information, noisy data, and large parameter spaces that lead to degenerate solutions. We harness the power of deep learning and successfully apply Convolutional Neural Networks to regress stellar rotation periods from Kepler light curves. Geometry-preserving time-series to image transformations of the light curves serve as inputs to a ResNet-18 based architecture which is trained through transf…
The FLUXCOM ensemble of global land-atmosphere energy fluxes
2019
Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For…