Search results for " Machine learning"

showing 10 items of 300 documents

Neural Teleportation

2023

In this paper, we explore a process called neural teleportation, a mathematical consequence of applying quiver representation theory to neural networks. Neural teleportation "teleports" a network to a new position in the weight space and preserves its function. This phenomenon comes directly from the definitions of representation theory applied to neural networks and it turns out to be a very simple operation that has remarkable properties. We shed light on surprising and counter-intuitive consequences neural teleportation has on the loss landscape. In particular, we show that teleportation can be used to explore loss level curves, that it changes the local loss landscape, sharpens global m…

FOS: Computer and information sciencesComputer Science - Machine LearningGeneral MathematicsComputer Science (miscellaneous)Computer Science - Neural and Evolutionary ComputingQuantum PhysicsNeural and Evolutionary Computing (cs.NE)Engineering (miscellaneous)quiver representations; neural networks; teleportationMachine Learning (cs.LG)
researchProduct

Linear density-based clustering with a discrete density model

2018

Density-based clustering techniques are used in a wide range of data mining applications. One of their most attractive features con- sists in not making use of prior knowledge of the number of clusters that a dataset contains along with their shape. In this paper we propose a new algorithm named Linear DBSCAN (Lin-DBSCAN), a simple approach to clustering inspired by the density model introduced with the well known algorithm DBSCAN. Designed to minimize the computational cost of density based clustering on geospatial data, Lin-DBSCAN features a linear time complexity that makes it suitable for real-time applications on low-resource devices. Lin-DBSCAN uses a discrete version of the density m…

FOS: Computer and information sciencesComputer Science - Machine LearningH.3.3Statistics - Machine LearningI.5.362H30 68T10I.5.3; H.3.3Machine Learning (stat.ML)Machine Learning (cs.LG)
researchProduct

Retrieval of aboveground crop nitrogen content with a hybrid machine learning method

2020

Abstract Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-base…

FOS: Computer and information sciencesComputer Science - Machine LearningHeteroscedasticity010504 meteorology & atmospheric sciencesMean squared errorEnMAP0211 other engineering and technologiesGaussian processes02 engineering and technologyManagement Monitoring Policy and LawQuantitative Biology - Quantitative Methods01 natural sciencesMachine Learning (cs.LG)symbols.namesakeHomoscedasticityEnMAPAgricultural monitoringComputers in Earth SciencesGaussian processQuantitative Methods (q-bio.QM)021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesMathematicsRemote sensing2. Zero hungerGlobal and Planetary ChangeInversionHyperspectral imagingImaging spectroscopyRadiative transfer modelingRegressionImaging spectroscopyFOS: Biological sciences[SDE]Environmental SciencessymbolsInternational Journal of Applied Earth Observation and Geoinformation
researchProduct

Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference

2018

This letter introduces warped Gaussian process (WGP) regression in remote sensing applications. WGP models output observations as a parametric nonlinear transformation of a GP. The parameters of such a prior model are then learned via standard maximum likelihood. We show the good performance of the proposed model for the estimation of oceanic chlorophyll content from multispectral data, vegetation parameters (chlorophyll, leaf area index, and fractional vegetation cover) from hyperspectral data, and in the detection of the causal direction in a collection of 28 bivariate geoscience and remote sensing causal problems. The model consistently performs better than the standard GP and the more a…

FOS: Computer and information sciencesComputer Science - Machine LearningHeteroscedasticityRemote sensing applicationComputer scienceComputer Vision and Pattern Recognition (cs.CV)Maximum likelihoodComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologies02 engineering and technologyBivariate analysis010501 environmental sciences01 natural sciencesMachine Learning (cs.LG)Data modelingsymbols.namesakeElectrical and Electronic EngineeringGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingParametric statisticsEstimation theoryHyperspectral imagingGeotechnical Engineering and Engineering GeologyConfidence intervalCausal inferencesymbolsIEEE Geoscience and Remote Sensing Letters
researchProduct

Graph Embedding via High Dimensional Model Representation for Hyperspectral Images

2021

Learning the manifold structure of remote sensing images is of paramount relevance for modeling and understanding processes, as well as to encapsulate the high dimensionality in a reduced set of informative features for subsequent classification, regression, or unmixing. Manifold learning methods have shown excellent performance to deal with hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high-dimensional input space and the (typically low) latent space is linear. This is a particularly strong assump…

FOS: Computer and information sciencesComputer Science - Machine LearningI.5.2Computer Vision and Pattern Recognition (cs.CV)G.1.6I.5.4Image and Video Processing (eess.IV)0211 other engineering and technologiesComputer Science - Computer Vision and Pattern RecognitionI.4.702 engineering and technologyElectrical Engineering and Systems Science - Image and Video ProcessingI.4.10; I.5.2; G.1.6; I.4.7; I.5.4I.4.10Machine Learning (cs.LG)FOS: Electrical engineering electronic engineering information engineeringGeneral Earth and Planetary SciencesElectrical and Electronic Engineering021101 geological & geomatics engineering
researchProduct

Deep Importance Sampling based on Regression for Model Inversion and Emulation

2021

Understanding systems by forward and inverse modeling is a recurrent topic of research in many domains of science and engineering. In this context, Monte Carlo methods have been widely used as powerful tools for numerical inference and optimization. They require the choice of a suitable proposal density that is crucial for their performance. For this reason, several adaptive importance sampling (AIS) schemes have been proposed in the literature. We here present an AIS framework called Regression-based Adaptive Deep Importance Sampling (RADIS). In RADIS, the key idea is the adaptive construction via regression of a non-parametric proposal density (i.e., an emulator), which mimics the posteri…

FOS: Computer and information sciencesComputer Science - Machine LearningImportance samplingComputer scienceMonte Carlo methodPosterior probabilityBayesian inferenceInferenceContext (language use)Machine Learning (stat.ML)02 engineering and technologyEstadísticaStatistics - ComputationMachine Learning (cs.LG)symbols.namesakeSurrogate modelStatistics - Machine LearningArtificial Intelligence0202 electrical engineering electronic engineering information engineeringAdaptive regressionEmulationElectrical and Electronic EngineeringModel inversionGaussian processComputation (stat.CO)EmulationApplied Mathematics020206 networking & telecommunicationsRemote sensingComputational Theory and MathematicsSignal Processingsymbols020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyAlgorithmImportance sampling
researchProduct

Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities

2021

The past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of problems. However, this success has been met by increasing model complexity and employing black-box AI models that lack transparency. In response to this need, Explainable AI (XAI) has been proposed to make AI more transparent and thus advance the adoption of AI in critical domains. Although there are several reviews of XAI topics in the literature that identified challenges and potential research directions in XAI, these challenges and research directions are scattered. This study, hence, presents a systematic meta-survey for challenges an…

FOS: Computer and information sciencesComputer Science - Machine LearningInformation Systems and ManagementArtificial Intelligence (cs.AI)Artificial IntelligenceComputer Science - Artificial IntelligenceSoftwareManagement Information SystemsMachine Learning (cs.LG)
researchProduct

Ockham's Razor in Memetic Computing: Three Stage Optimal Memetic Exploration

2012

Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorit…

FOS: Computer and information sciencesComputer Science - Machine LearningInformation Systems and ManagementComputer scienceComputer Science - Artificial Intelligencemedia_common.quotation_subjectEvolutionary algorithmComputational intelligenceField (computer science)Theoretical Computer ScienceMachine Learning (cs.LG)Artificial IntelligenceSimplicitymemetic algorithmsevolutionary algorithmsmedia_common:Engineering::Computer science and engineering [DRNTU]business.industrycomputational intelligence optimizationComputer Science ApplicationsArtificial Intelligence (cs.AI)Control and Systems Engineeringmemetic computing:Engineering::Electrical and electronic engineering [DRNTU]Memetic algorithmAlgorithm designArtificial intelligencebusinessSoftware
researchProduct

A new class of generative classifiers based on staged tree models

2020

Generative models for classification use the joint probability distribution of the class variable and the features to construct a decision rule. Among generative models, Bayesian networks and naive Bayes classifiers are the most commonly used and provide a clear graphical representation of the relationship among all variables. However, these have the disadvantage of highly restricting the type of relationships that could exist, by not allowing for context-specific independences. Here we introduce a new class of generative classifiers, called staged tree classifiers, which formally account for context-specific independence. They are constructed by a partitioning of the vertices of an event t…

FOS: Computer and information sciencesComputer Science - Machine LearningInformation Systems and ManagementComputingMethodologies_PATTERNRECOGNITIONArtificial Intelligence (cs.AI)Artificial IntelligenceComputer Science - Artificial IntelligenceStatistics - Machine LearningMachine Learning (stat.ML)SoftwareManagement Information SystemsMachine Learning (cs.LG)
researchProduct

Brima: Low-Overhead Browser-Only Image Annotation Tool (Preprint)

2021

Image annotation and large annotated datasets are crucial parts within the Computer Vision and Artificial Intelligence this http URL the same time, it is well-known and acknowledged by the research community that the image annotation process is challenging, time-consuming and hard to scale. Therefore, the researchers and practitioners are always seeking ways to perform the annotations easier, faster, and at higher quality. Even though several widely used tools exist and the tools' landscape evolved considerably, most of the tools still require intricate technical setups and high levels of technical savviness from its operators and crowdsource contributors. In order to address such challenge…

FOS: Computer and information sciencesComputer Science - Machine LearningLow overheadProcess (engineering)Computer scienceComputer Vision and Pattern Recognition (cs.CV)Scale (chemistry)media_common.quotation_subjectComputer Science - Computer Vision and Pattern RecognitionMachine Learning (cs.LG)World Wide WebCrowdsourceAutomatic image annotationResearch communityQuality (business)Preprintmedia_common2021 IEEE International Conference on Image Processing (ICIP)
researchProduct