Search results for " Magnetic field"
showing 10 items of 165 documents
Models and data analysis tools for the Solar Orbiter mission
2020
All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…
Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations
2021
Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto-neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of early times (with a convective layer) and late times (when the star is…
Magnetic field-assisted single-point incremental forming with a magnet ball tool
2021
Abstract This paper describes magnetic field-assisted single-point incremental forming (M-SPIF) with a Nd-Fe-B magnet ball tool. In M-SPIF, the tool driven by magnetic force plastically deforms a sheet. The polarity of the magnet tool helps to make the magnetic force (i.e., forming force) more controllable. In creating a truncated cone, the direction of the magnetic force gradually points more outward as the process progresses, and material is forced outwards from the cone center, increasing thinning in M-SPIF, while the cone center remains undeformed in traditional SPIF. Moreover, M-SPIF creates less localized plastic strain than traditional SPIF while forming the desired geometry.
Transcranial Static Magnetic Field Stimulation over the Primary Motor Cortex Induces Plastic Changes in Cortical Nociceptive Processing.
2018
Transcranial static magnetic field stimulation (tSMS) is a novel and inexpensive, non-invasive brain stimulation (NIBS) technique. Here, we performed non-invasive modulation of intra-epidermal electrical stimulation-evoked potentials (IES-EPs) by applying tSMS or sham stimulation over the primary motor (M1) and somatosensory (S1) cortices in 18 healthy volunteers for 15 min. We recorded EPs after IES before, right after, and 10 min after tSMS. The IES-EP amplitude was significantly reduced immediately after tSMS over M1, whereas tSMS over S1 and sham stimulation did not affect the IES-EP amplitude. Thus, tSMS may affect cortical nociceptive processing. Although the results of intervention f…
The intensity contrast of solar photospheric faculae and network elements : II. Evolution over the rising phase of solar cycle 23
2006
We studied the radiative properties of small magnetic elements (active region faculae and the network) during the rising phase of solar cycle 23 from 1996 to 2001, determining their contrasts as a function of heliocentric angle, magnetogram signal, and the solar cycle phase. We combined near-simultaneous full disk images of the line-of-sight magnetic field and photospheric continuum intensity provided by the MDI instrument on board the SOHO spacecraft. Sorting the magnetogram signal into different ranges allowed us to distinguish between the contrast of different magnetic structures. We find that the contrast center-to-limb variation (CLV) of these small magnetic elements is independent of …
Reversible effect of magnetic fields on human lymphocyte activation patterns: different sensitivity of naive and memory lymphocyte subsets.
2009
The aim of this study was to investigate the influence of 50 Hz magnetic or static magnetic fields of 0.5 mT on subsets of human CD4(+) T cells in terms of cytokine release/content, cell proliferation and intracellular free calcium concentration. CD4(+) T cells can be divided into different subsets on the basis of surface marker expression, such as CD45, and T cells can be divided into naive (CD45RA(+)) and memory (CD45RA(-)) cells. In this study, the effects of magnetic fields after 24 and 48 h of cell culture were analyzed. We found that the CD4(+)CD45RA(-) T subset were more sensitive after 2 h of exposure. Decreases in the release/content of IFN-gamma, in cell proliferation and in intra…
A Highly Magnetized Twin-Jet Base Pinpoints a Supermassive Black Hole
2016
Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on Blandford & Znajek extract the rotational energy from a Kerr black hole, which could be the case for NGC1052, to launch these jets. This requires magnetic fields of the order of $10^3\,$G to $10^4\,$G. We imaged the vicinity of the SMBH of the AGN NGC1052 with the Global Millimetre VLBI Array and found a bright and compact central feature, smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~8000…
Formation of X-ray emitting stationary shocks in magnetized protostellar jets
2016
X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. We aim at investigating the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets, the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks, and the physical properties of the shocked plasma. We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations modelling supersonic jets ramming into a magnetized medium and explored different configurations…
A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371
2015
We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering …
A 0535+26 in the August/September 2005 outburst observed by RXTE and INTEGRAL
2007
In this Letter we present results from INTEGRAL and RXTE observations of the spectral and timing behavior of the High Mass X-ray Binary A 0535+26 during its August/September 2005 normal (type I) outburst with an average flux F(5-100keV)~400mCrab. The search for cyclotron resonance scattering features (fundamental and harmonic) is one major focus of the paper. Our analysis is based on data from INTEGRAL and RXTE Target of Opportunity Observations performed during the outburst. The pulse period is determined. X-ray pulse profiles in different energy ranges are analyzed. The broad band INTEGRAL and RXTE pulse phase averaged X-ray spectra are studied. The evolution of the fundamental cyclotron …