Search results for " Magnetism"

showing 10 items of 46 documents

On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media

1983

r= 3~2, initiated by Saranen [ 131. In the above, n is the outward-drawn unit normal to the boundary and A denotes the exterior product. According to the simple models for static magnetic fields (resp. electric fields) which are governed by (0.1) (resp. (0.2)), we call (0.1) the magnetic type problem and (0.2) the electric type problem. Considering bounded smooth domains a c R3, we discussed in [ 131, by means of an appropriate Hilbert space method, the solvability and the representation of the solutions for both problems (0.1) and (0.2). Such a new approach was necessary to cover the general nonhomogeneous cases where v and E are matrix-valued functions. Here our aim is twofold. First, we …

Applied MathematicsMathematical analysisScalar (mathematics)Hilbert spaceGauss's law for magnetismsymbols.namesakeElectric fieldBounded functionsymbolsVector fieldExterior algebraAnalysisVector potentialMathematicsJournal of Mathematical Analysis and Applications
researchProduct

New Twists of 3D Chiral Metamaterials

2018

Rationally designed artificial materials, called metamaterials, allow for tailoring effective material properties beyond ("meta") the properties of their bulk ingredient materials. This statement is especially true for chiral metamaterials, as unlocking certain degrees of freedom necessarily requires broken centrosymmetry. While the field of chiral electromagnetic/optical metamaterials has become rather mature, the field of elastic/mechanical metamaterials is just emerging and wide open. This research news reviews recent theoretical and experimental progress concerning 3D chiral mechanical and optical metamaterials, with special emphasis on work performed at KIT.

Artificial materialsMaterials scienceField (physics)Mechanical EngineeringPhysics::OpticsMetamaterial02 engineering and technologyDegrees of freedom (mechanics)Physics::Classical Physics010402 general chemistry021001 nanoscience & nanotechnologyCentrosymmetry01 natural sciences0104 chemical sciencesDuality (electricity and magnetism)Photonic metamaterialTheoretical physicsMechanics of MaterialsGeneral Materials ScienceBulk ingredient0210 nano-technologyAdvanced Materials
researchProduct

A step further in the comprehension of the magnetic coupling in gadolinium(III)-based carboxylate complexes

2013

Three new gadolinium(III) complexes of formula [Gd4(bta) 3(H2O)16]n·12nH2O (1), [Gd4(bta)3(H2O)12] n·18nH2O (2) and [Gd2(H 2bta)(bta)(H2O)2]n·4nH 2O (3) (H4bta = 1,2,4,5-benzenetetracarboxylic acid) have been synthesized and their structures determined by X-ray diffraction. 1 and 3 are three-dimensional compounds whereas 2 exhibits a two-dimensional structure. The ability of the bta4- to adopt different coordination modes accounts for these high dimensionalities although it precludes a rational structural design. The structures of 1-3 have in common the double oxo-carboxylate bridge between gadolinium(III) ions (μ-O: κ2O,O′) either as a discrete units (1 and 2) or as a chain (3) and one (3)…

DiffractionMetal–organic frameworksStereochemistryGadoliniumchemistry.chemical_elementMagneto–structural correlationsAtmospheric temperature rangeInductive couplingIonInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryMaterials ChemistryAntiferromagnetismMetal-organic frameworkCarboxylatePhysical and Theoretical ChemistryMolecular magnetismGadolinium(III)Polyhedron 52: 321-332 (2013)
researchProduct

Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet

2008

Thin film transistors based on polyarylamine poly?N,N?-diphenyl-N,N ?bis?4-hexylphenyl?- ?1,1?biphenyl?-4,4?-diamine ?pTPD? were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold filling. Peer Reviewed

Electron mobilityMaterials scienceOrganic compounds.Analytical chemistryDipolar broadeningGeneral Physics and AstronomySpin coatingHole mobilityElectronic density of statesConductivityOxidacióCompostos orgànicsElectrical resistivity and conductivity:FÍSICA [UNESCO]Molecular clustersOrganic compoundsOxidationDopingElectrical conductivityOxidation.Molecular nanomagnetMolecular magnetic clusterMolecular magnetism Nanostructured materialsSpin coatingDopingUNESCO::FÍSICAElectric conductivity.Thin film transistorsNanostructured materialsConductivitat elèctricaNanomagnet:Enginyeria electrònica::Microelectrònica [Àrees temàtiques de la UPC]Doping ; Electrical conductivity ; Electronic density of states ; Hole mobility ; Molecular clusters ; Molecular magnetism Nanostructured materials ; Organic compounds ; Oxidation ; Spin coating ; Thin film transistorsDensity of statesNanostructured materials.Hole transport layerMaterials nanoestructuratsOrder of magnitude
researchProduct

Carbonyl Back-Bonding Influencing the Rate of Quantum Tunnelling in a Dysprosium Metallocene Single-Molecule Magnet.

2019

The isocarbonyl-ligated metallocene coordination polymers [Cp*2M(μ-OC)W(Cp)(CO)(μ-CO)]∞ were synthesized with M = Gd (1, L = THF) and Dy (2, no L). In a zero direct-current field, the dysprosium version 2 was found to be a single-molecule magnet (SMM), with analysis of the dynamic magnetic susceptibility data revealing that the axial metallocene coordination environment leads to a large anisotropy barrier of 557(18) cm–1 and a fast quantum-tunnelling rate of ∼3.7 ms. Theoretical analysis of two truncated versions of 2, [Cp*2Dy{(μ-OC)W(Cp)(CO)2}2]− (2a), and [Cp*2Dy(OC)2]+ (2b), in which the effects of electron correlation outside the 4f orbital space were studied, revealed that tungsten-to-…

Electronic correlation010405 organic chemistrymolecular magnetismchemistry.chemical_element010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryMagnetDysprosiumPhysical chemistrySingle-molecule magnetPhysical and Theoretical Chemistrysingle-molecule magnetsMetalloceneQuantum tunnellingPi backbondingInorganic chemistry
researchProduct

Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice

2017

We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.

Frustrated magnetismFOS: Physical sciencesBond-dependent Ising couplingsQuantum fluctuations01 natural sciencesTriangular lattice010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsSpin waveQuantum mechanics0103 physical sciencesSpin gapHexagonal latticeElectrical and Electronic Engineering010306 general physicsQuantumQuantum fluctuationSpin-½PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsBond-dependent Ising couplings; Frustrated magnetism; Linear spin-wave spectrum; Quantum fluctuations; Spin gap; Triangular lattice;Ising modelGround stateDegeneracy (mathematics)Linear spin-wave spectrum
researchProduct

Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles - Diversification and its interpretation: A new approach.

2016

Magnetic and geochemical parameters of soils are determined with respect to geology, pedogenesis and anthropopression. Depending on local conditions these factors affect magnetic and geochemical signals simultaneously or in various configurations. We examined four type of soils (Entic Podzol, Eutric Cambisol, Humic Cambisol and Dystric Cambisol) developed on various bedrock (the Tumlin Sandstone, basaltoid, amphibolite and serpentinite, respectively). Our primary aim was to characterize the origin and diversification of the magnetic and geochemical signal in soils in order to distinguish the most reliable methods for correct interpretation of measured parameters. Presented data include sele…

Geological Phenomena010504 meteorology & atmospheric sciencesEnvironmental magnetismSoil testHealth Toxicology and MutagenesisMineralogySoil science010501 environmental sciencesToxicology01 natural sciencesSoilMetals HeavySoil Pollutants0105 earth and related environmental sciencesCambisolTopsoilMineralsMagnetic PhenomenaGeneral MedicinePollutionMagnetic susceptibilityPodzolPedogenesisSoil waterGeologyEnvironmental MonitoringEnvironmental pollution (Barking, Essex : 1987)
researchProduct

Hypnosis, Animal Magnetism, and Monstrosity in late Nineteenth Century English Literature

2019

We will explore the literary image of animal magnetism and hypnosis through the analysis of two works of fiction: the novels Richard Marsh’s The Beetle: A Mystery (1897) and Bram Stoker’s Dracula (1897). During all the 19th century and mainly at its last, many authors used animal magnetism and hypnosis in their fictional creations in an environmental or plot way, so much that Arthur Quiller-Couch, an important literary critic of the nineteenth century, spoke about the emergence of a new literary subgenre that he called “hypnotic fiction”. Starting from the idea that in this mesmeric and hypnotic fiction literature you can clearly trace differentiated stereotypes of magnetizers and hypnotist…

HypnosisFiction Literaturemedia_common.quotation_subjectStereotypedráculaAnimal magnetism01 natural sciencesliteratura de ficción03 medical and health sciences0302 clinical medicineHistory and Philosophy of ScienceAZ20-999magnetismo animalmonstruos030212 general & internal medicinePlot (narrative)Animal MagnetismThe BeetleHistory of medicine. Medical expeditionsR131-687media_commonLiteratureel escarabajobiologybusiness.industryDraculaCharacter (symbol)Arthipnosisbiology.organism_classification0104 chemical sciences010404 medicinal & biomolecular chemistryDraculaLiterary criticismHistory of scholarship and learning. The humanitiesbusinessMonstersHypnosisMonsterAsclepio
researchProduct

Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

2015

Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that …

Lanthanidemuon spin spectroscopyMaterials scienceFOS: Physical scienceschemistry.chemical_elementcharge dopingSuperconductivity (cond-mat.supr-con)Phase (matter)Condensed Matter::SuperconductivityPnictide superconductorElectronicinterplay magnetism and superconductivityOptical and Magnetic MaterialsSpectroscopySuperconductivityCondensed Matter Physics; Electronic Optical and Magnetic Materials SPIN RELAXATION PHASE-DIAGRAMCondensed matter physicsCondensed Matter - SuperconductivityPHASE-DIAGRAMDopingMuon spin spectroscopyCondensed Matter Physics3. Good healthElectronic Optical and Magnetic MaterialschemistryFluorineSPIN RELAXATIONCondensed Matter::Strongly Correlated ElectronsFluorine dopingPhysical Review B - Condensed Matter and Materials Physics
researchProduct

Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

2017

MoEDAL is designed to identify new physics in the form of long-lived highly-ionising particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC run-1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges excee…

Magnetic monopolesProtonMagnetismPhysics beyond the Standard ModelGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - Experimentlaw.inventionCOLLIDERHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)STOPPING-POWERlawPhysics02 Physical SciencesLarge Hadron ColliderSTABLE MASSIVE PARTICLESPhysicsMagnetismDrell–Yan processhep-phPersistent currents3. Good healthHigh Energy Physics - PhenomenologyPhysical SciencesELECTROWEAK MONOPOLEParticle Physics - ExperimentGeneral PhysicsMagnetometerPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesNuclear track detector114 Physical sciencesNuclear physicsPhysics and Astronomy (all)Tellurium compoundsHigh energy physics Magnetism Magnetometers Highly ionizing particles Magnetic charges Magnetic monopoles Nuclear track detector Passive detection Persistent currents Proton proton collisions Trapping techniques Tellurium compounds0103 physical sciencesHigh energy physics010306 general physicsColliderIONIZING PARTICLESScience & TechnologyProton proton collisionshep-ex010308 nuclear & particles physicsMagnetometers Highly ionizing particlesMagnetic chargesTrapping techniquesPassive detectionSTATES
researchProduct