Search results for " Materials Science"

showing 10 items of 7414 documents

High temperature oxidation of Mg2(Si-Sn)

2016

Abstract High temperature oxidation of Mg 2 Si 1- x Sn x alloys ( x  = 0.1 ⿿ 0.6) has been investigated. The oxidation rate was slow for temperatures below 430 °C. In the temperature range between 430⿿500 °C all the alloys exhibited breakaway oxidation. The onset temperature of the breakaway region in general decreased with increasing level of Sn in the alloy. The breakaway behavior is explained by a combination of the formation of a non-protective MgO layer and the formation of Sn-rich liquid at the interface between the oxide and Mg depleted Mg 2 Sn.

010302 applied physicsMaterials scienceGeneral Chemical EngineeringAlloyMetallurgyOxide02 engineering and technologyGeneral Chemistryengineering.materialAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesCorrosionchemistry.chemical_compoundchemistry0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyLayer (electronics)Oxidation rateCorrosion Science
researchProduct

Tandem laser-gas metal arc welding joining of 20 mm thick super duplex stainless steel: An experimental and numerical study

2020

The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drille…

010302 applied physicsMaterials scienceMaterials processingTandemMechanical EngineeringSteel structures02 engineering and technologyWelding021001 nanoscience & nanotechnologyLaser01 natural sciencesFinite element methodGas metal arc weldinglaw.inventionlaw0103 physical sciencesGeneral Materials ScienceComposite material0210 nano-technologyProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

FTIR Analysis of Electron Irradiated Single and Multilayer Si<sub>3</sub>N<sub>4</sub> Coatings

2018

Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal inte…

010302 applied physicsMaterials scienceMechanical Engineering02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMechanics of Materials0103 physical sciencesGeneral Materials ScienceIrradiationFourier transform infrared spectroscopy0210 nano-technologyNuclear chemistryKey Engineering Materials
researchProduct

Co-Deposition and Characterization of Hydroxyapatite-Chitosan and Hydroxyapatite-Polyvinylacetate Coatings on 304 SS for Biomedical Devices

2019

During the last decades, biomaterials have been deeply studied to perform and improve coatings for biomedical devices. Metallic materials, especially in the orthopedic field, represent the most common material used for different type of devices thanks to their good mechanical properties. Nevertheless, low/medium resistance to corrosion and low osteointegration ability characterizes these materials. To overcome these problems, the use of biocoatings on metals substrate is largely diffused. In fact, biocoatings have a key role to confer biocompatibility properties, to inhibit corrosion and thus improve the lifetime of implanted devices. In this work, the attention was focused on Hydroxyapatit…

010302 applied physicsMaterials scienceMechanical EngineeringCo deposition02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCharacterization (materials science)Chitosanchemistry.chemical_compoundchemistryChemical engineeringMechanics of Materials0103 physical sciencesGeneral Materials Science0210 nano-technologyKey Engineering Materials
researchProduct

A Computational Study on Crack Propagation in Bio-Inspired Lattices

2018

A computational preliminary study on the fracture behaviour of two kinds of finite-size bio-inspired lattice configurations is presented. The study draws inspiration from recent investigations aimed at increasing the fracture energy of some materials through small modifications of their microstructure. Nature provides several examples of strategies used to delay or arrest damage initiation and crack propagation. Striking examples are provided by the micro-architecture of several kinds of wood. In this study, the effects on crack propagations induced by architectural alterations inspired by the microstructure of wood are computationally investigated. In an age in which tight control of the m…

010302 applied physicsMaterials scienceMechanical EngineeringMathematical analysisFracture mechanics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFinite element methodMechanics of Materials0103 physical sciencesLattice materialsGeneral Materials Science0210 nano-technologyKey Engineering Materials
researchProduct

Vapor plume and melted zone behavior during dissimilar laser welding of titanium to aluminum alloy

2020

The present study deals with continuous Yb:YAG laser welding of pure titanium to aluminum alloy A5754 performed with different beam offsets to the joint line. Spectroscopic and morphological characterization of vapor plume exiting the keyhole was combined with post-mortem observation and energy-dispersive X-ray spectroscopy (EDX) analysis of the welds. The laser beam centered on the joint line resulted in periodic transversal inclination of a vapor jet on the aluminum side associated with a local increase of melt width and an intense spatter formation. Such behavior can be attributed to the instability of the keyhole wall from the aluminum side. The beam offset on the titanium side led to …

010302 applied physicsMaterials scienceMechanical EngineeringMetallurgyAlloychemistry.chemical_elementLaser beam welding02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyLaser01 natural sciencesPlumelaw.inventionchemistryAluminiumlawJoint line0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyBeam (structure)TitaniumProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

Properties of Nanosized Ferrite Powders and Sintered Materials Prepared by the Co-Precipitation Technology, Combined with the Spray-Drying Method

2016

Cobalt and nickel ferrites powders are synthesized by the co-precipitation technology, combined with the spray-drying method. The crystallite size, specific surface area (SSA), magnetic properties of synthesized products are investigated. All the synthesized ferrites are nanocrystalline single phase materials with crystallite size of 5-6 nm, the SSA of 80-85 m2/g and the calculated particle size of 13-15 nm. After spray-drying granules of the size up to 10 μm are obtained. After thermal treatment at 550 and 950 °C SSA decreases to 40-50 m2/g and 20-22 m2/g, respectively. The saturation magnetization at these temperatures increase from 17 to 40 emu/g for NiFe2O4 and from 51 to 77 emu/g for C…

010302 applied physicsMaterials scienceMechanical EngineeringMetallurgySintering02 engineering and technologyThermal treatment021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline materialChemical engineeringMechanics of MaterialsSpray dryingSpecific surface area0103 physical sciencesFerrite (magnet)General Materials ScienceParticle sizeCrystallite0210 nano-technologyKey Engineering Materials
researchProduct

Recent progress in understanding the persistent luminescence in SrAl 2 O 4 :Eu,Dy

2019

Ever since the discovery of SrAl2O4:Eu,Dy persistent afterglow material, that can intensively glow up to 20 h, the mechanism of long-lasting luminescence has been a popular area of research. The re...

010302 applied physicsMaterials scienceMechanical EngineeringStrontium aluminate02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsPhotochemistry01 natural sciences3. Good healthAfterglowchemistry.chemical_compoundPersistent luminescencechemistryMechanics of Materials0103 physical sciencesGeneral Materials Science0210 nano-technologyLuminescenceMechanism (sociology)Materials Science and Technology
researchProduct

Characteristics of Sintered Materials Obtained from Ferrite Nanopowders Synthesised with Different Methods

2018

Ferrite materials, especially those containing nickel and cobalt, are popular due to their unique mechanical and magnetic properties. Single phase NiFe2O4 and CoFe2O4 nanopowders obtained by different methods were used for sintering studies. Chemical sol-gel self-propagating combustion method, co-precipitation technology combined with hydrothermal synthesis or spray-drying method, and high frequency plasma chemical synthesis have been used to synthesize ferrite nanopowders. Relatively dense (95-99%) materials with high saturation magnetization (MS = 80-84 emu/g for CoFe2O4 and MS = 46-48 emu/g for NiFe2O4) were obtained at 1100-1200 °C temperatures.

010302 applied physicsMaterials scienceMechanics of MaterialsMechanical Engineering0103 physical sciencesMetallurgyFerrite (magnet)General Materials Science02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesKey Engineering Materials
researchProduct

The Matrix Effect and Application of the Multi-Parameter Optimization Method for X-Ray Spectrometric Determination of the Quantitative Composition of…

2018

Determining the quantitative composition of clay samples with X-ray fluorescent spectrometry is complicated because of the matrix effect, in which any element can increase or decrease the analytical signals of other elements. In order to predict the properties of clays, it is essential to know their precise chemical composition. Therefore, using the standard addition method was determined calibration and empirical influence coefficients, as well as the true composition of the elements. Farther, these coefficients were used to correct the matrix effect and develop a multi-parameter optimization method. It was determined that in clay samples, consisting of Si, Al, Fe, K, Mg, Ca, Na and Ti oxi…

010302 applied physicsMaterials scienceMechanics of MaterialsMechanical Engineering010401 analytical chemistry0103 physical sciencesAnalytical chemistryX-rayGeneral Materials ScienceComposition (combinatorics)01 natural sciencesMulti parameter0104 chemical sciencesKey Engineering Materials
researchProduct