Search results for " Mechanical Properties"
showing 10 items of 72 documents
Influence of the chemical composition of monolithic zirconia on its optical and mechanical properties. Systematic review and meta-regression.
2021
Este artículo se encuentra disponible en la siguiente URL: https://www.jstage.jst.go.jp/article/jpr/66/2/66_JPR_D_20_00218/_pdf/-char/en Este artículo de investigación pertenece al número especial "Advances in Personalized Nursing Care". Purpose: This systematic review set out to investigate the influence of chemical composition and specimen thickness of monolithic zirconia on its optical and mechanical properties. Meta-analysis and meta-regression analyzed the effects of variations in percentages of yttrium, aluminum, and specimen thickness of monolithic zirconia. Study selection: The review followed recommendations put forward in the PRISMA checklist. An electronic search for relevant art…
Effects of Rastering Velocity on Electrospun Polyeurthane Structure and Mechanical Properties
2010
Testing mechanical characteristics of chestnut stakes used in bed sills for stream restoration
2017
Using of wood elements for constructing bed sills in Mediterranean streams, where the banks are not protected by tree vegetation, needs an evaluation of biological and mechanical characteristics for evaluating both the wood durability and the effectiveness of the stream restoration project. Very few studies have dealt both with the decay of mechanical characteristics of wood elements employed for stream restoration works and with the changes over time of physical and chemical wood characters. In this paper, for a wood and stone bed sill located in a stream having no shaded banks, the changes of physical and chemical characters detected after 12, 18, 24, 30, 36, 42 and 48 months on chestnut …
Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins
2017
Unidad de excelencia María de Maeztu MdM-2015-0552 Recent years have seen an increasing public interest in issues related to energy saving and environmental pollution reduction in the building sector. As a result, many directives have been issued, the most important being the Directive 2010/31/EU (EPBD Recast) on the energy performance of buildings, which requires that "Member States shall ensure that by 31 December 2020 all new buildings are nearly zero-energy buildings". This goal can be obtained not only by reducing energy demand for heating and cooling, but also, for example, by improving building envelope performances. In this work, a first analysis of the thermal and structural behavi…
Processing and Properties of Biopolymer/Polyhydroxyalkanoates Blends
2011
In this paper, the processability and the performance of a biodegradable polymer, Mater-Bi, and of its blends with either a sample of poly (hydroxy alkanoates) (PHA) or with bacterial biomass containing PHAs were compared. Adding PHA or directly the biomass containing it allows improving the processability of the matrix. Moreover, the mechanical behaviour of the systems was compared considering two different preparation methods, namely compression and injection moulding. The injection moulded samples show poorer mechanical performances than those of the compression moulded systems. The impact strength significantly improves when PHA is added while it reduces when bacterial biomass is used i…
Mechanical behavior of carbon/flax hybrid composites for structural applications
2012
In this work, the influence of an unidirectional carbon fabric layer on the mechanical performances of bidirectional flax fabric/epoxy composites used for structural applications was studied. Two different bidirectional flax fabrics were used to produce flax fabric reinforced plastic (FFRP) laminates by a vacuum bagging process: one is normally used to make curtains; the other, heavier and more expensive than the previous one, is usually used as reinforcement in composite structures. In order to realize hybrid structures starting from FFRP, an unidirectional UHM carbon fabric was used to replace a bidirectional flax fabric. Tensile and three-point bending tests were performed to evaluate t…
Stability of FeVO4-II under Pressure: A First-Principles Study
2022
In this work, we report first-principles calculations to study FeVO4 in the CrVO4 -type (phase II) structure under pressure. Total-energy calculations were performed in order to analyze the structural parameters, the electronic, elastic, mechanical, and vibrational properties of FeVO4 -II up to 9.6 GPa for the first time. We found a good agreement in the structural parameters with the experimental results available in the literature. The electronic structure analysis was complemented with results obtained from the Laplacian of the charge density at the bond critical points within the Quantum Theory of Atoms in Molecules methodology. Our findings from the elastic, mechanic, and vibrational p…
Carbon Fiber Composites Cured by γ-Radiation-Induced Polymerization of an Epoxy Resin Matrix
2008
The use of ionizing radiation in order to initiate polymerization of suitable monomers has found increased interest in the last two decades due to its several advantages. In this work, carbon fiber composites through gamma radiation polymerization of epoxy matrices have been produced for aerospace and advanced automotive applications. Composite samples were produced by irradiation at room temperature using different radiation doses and, as reference, thermal curing of the same epoxy resin formulations was also carried out. Furthermore, some irradiated samples were subjected to postirradiation thermal curing to complete the polymerization reactions. The properties of the cured materials were…
Bionanocomposite Blown Films: Insights on the Rheological and Mechanical Behavior.
2021
In this work, bionanocomposites based on two different types of biopolymers belonging to the MaterBi® family and containing two kinds of modified nanoclays were compounded in a twin-screw extruder and then subjected to a film blowing process, aiming at obtaining sustainable films potentially suitable for packaging applications. The preliminary characterization of the extruded bionanocomposites allowed establishing some correlations between the obtained morphology and the material rheological and mechanical behavior. More specifically, the morphological analysis showed that, regardless of the type of biopolymeric matrix, a homogeneous nanofiller dispersion was achieved
Experimental Characterization of the Properties of Double-Lap Needled and Hybrid Joints of Carbon/Epoxy Composites
2015
The effect of through-thickness reinforcement by thin 1 mm steel needles (z-pins) on the static tensile strength of double-lap joints of a carbon/epoxy composite was investigated. Two types of joints—z-pinned and hybrid (including glued ones)—were considered. The joints were reinforced in the overlap region with 9, 25, or 36 z-pins. Comparing mechanical properties of the double-lap joints with the corresponding characteristics of their unpinned counterparts, the z-pins were found to be highly effective: the strength and stiffness of the pinned joints increased up to 300% and 280%, respectively. These improvements were due to a transition in the failure mechanism from debonding of the joint …