Search results for " Metric Geometry"
showing 10 items of 104 documents
Sard property for the endpoint map on some Carnot groups
2016
In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizat…
Semianalyticity of isoperimetric profiles
2009
It is shown that, in dimensions $<8$, isoperimetric profiles of compact real analytic Riemannian manifolds are semi-analytic.
Optimal transport maps on Alexandrov spaces revisited
2018
We give an alternative proof for the fact that in $n$-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely $(n-1)$-unrectifiable starting measure, and that this plan is induced by an optimal map.
Conformal equivalence of visual metrics in pseudoconvex domains
2017
We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in $\C^n$ are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are inspired by Mostow's proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.
Failure of the local-to-global property for CD(K,N) spaces
2016
Given any K and N we show that there exists a compact geodesic metric measure space satisfying locally the CD(0,4) condition but failing CD(K,N) globally. The space with this property is a suitable non convex subset of R^2 equipped with the l^\infty-norm and the Lebesgue measure. Combining many such spaces gives a (non compact) complete geodesic metric measure space satisfying CD(0,4) locally but failing CD(K,N) globally for every K and N.
Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below
2013
We prove existence and uniqueness of optimal maps on $RCD^*(K,N)$ spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation.
Bicycle paths, elasticae and sub-Riemannian geometry
2020
We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).
Isometries of nilpotent metric groups
2016
We consider Lie groups equipped with arbitrary distances. We only assume that the distance is left-invariant and induces the manifold topology. For brevity, we call such object metric Lie groups. Apart from Riemannian Lie groups, distinguished examples are sub-Riemannian Lie groups and, in particular, Carnot groups equipped with Carnot-Carath\'eodory distances. We study the regularity of isometries, i.e., distance-preserving homeomorphisms. Our first result is the analyticity of such maps between metric Lie groups. The second result is that if two metric Lie groups are connected and nilpotent then every isometry between the groups is the composition of a left translation and an isomorphism.…
Polynomial and horizontally polynomial functions on Lie groups
2022
We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $\mathfrak g$ of left-invariant vector fields on a Lie group $\mathbb G$ and we assume that $S$ Lie generates $\mathfrak g$. We say that a function $f:\mathbb G\to \mathbb R$ (or more generally a distribution on $\mathbb G$) is $S$-polynomial if for all $X\in S$ there exists $k\in \mathbb N$ such that the iterated derivative $X^k f$ is zero in the sense of distributions. First, we show that all $S$-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent $k$ in the previous defini…
Cheeger-harmonic functions in metric measure spaces revisited
2013
Let $(X,d,\mu)$ be a complete metric measure space, with $\mu$ a locally doubling measure, that supports a local weak $L^2$-Poincar\'e inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on $(X,d,\mu)$. Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.