Search results for " Metric Geometry"

showing 10 items of 104 documents

Sard property for the endpoint map on some Carnot groups

2016

In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizat…

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematics53C17 22F50 22E25 14M17SubvarietyGroup Theory (math.GR)02 engineering and technologySard's property01 natural sciencesSet (abstract data type)020901 industrial engineering & automationAbnormal curves; Carnot groups; Endpoint map; Polarized groups; Sard's property; Sub-Riemannian geometry; Analysis; Mathematical PhysicsMathematics - Metric GeometryFOS: MathematicsPoint (geometry)Canonical mapAbnormal curves; Carnot groups Endpoint map Polarized groups Sard's property Sub-Riemannian geometry Analysis0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsta111Polarized groupsCarnot groupLie groupEndpoint mapMetric Geometry (math.MG)Base (topology)ManifoldSub-Riemannian geometryDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groupsAbnormal curvesMathematics - Group TheoryAnalysis
researchProduct

Semianalyticity of isoperimetric profiles

2009

It is shown that, in dimensions $<8$, isoperimetric profiles of compact real analytic Riemannian manifolds are semi-analytic.

Mathematics - Differential Geometry0209 industrial biotechnologyRiemannian Geometry Real Analytic Geometry Geometric measure Theory Metric Geometry Geometric Analysis.Calibration (statistics)02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake020901 industrial engineering & automationFOS: MathematicsMathematics::Metric GeometryMorse theory0101 mathematicsMathematics::Symplectic GeometryIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsMathematical analysis53C20;49Q20;14P15;32B20Differential Geometry (math.DG)Computational Theory and Mathematics[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Riemann surfaceCalibrationsymbolsGeometry and TopologyMathematics::Differential GeometryIsoperimetric inequalityAnalysis
researchProduct

Optimal transport maps on Alexandrov spaces revisited

2018

We give an alternative proof for the fact that in $n$-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely $(n-1)$-unrectifiable starting measure, and that this plan is induced by an optimal map.

Mathematics - Differential GeometryClass (set theory)Pure mathematicsGeneral MathematicsExistential quantificationPlan (drawing)Algebraic geometryoptimaalisuusCurvatureMeasure (mathematics)Primary 53C23. Secondary 49K30Mathematics - Analysis of PDEsMathematics - Metric GeometryFOS: Mathematicsmass transportationMathematics::Metric GeometryMathematicsAlexandrov-avaruudetMetric Geometry (math.MG)Number theoryDifferential Geometry (math.DG)Bounded functionMathematics::Differential GeometrymassasiirtoAlexandrov spacesAnalysis of PDEs (math.AP)
researchProduct

Conformal equivalence of visual metrics in pseudoconvex domains

2017

We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in $\C^n$ are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are inspired by Mostow's proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.

Mathematics - Differential GeometryComputer Science::Machine LearningPure mathematicsGeneral Mathematics32T15 32Q45 32H40 53C23 53C17Rigidity (psychology)Conformal mapMathematical proofComputer Science::Digital Libraries01 natural sciencesdifferentiaaligeometriaStatistics::Machine LearningCorollaryMathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics::Metric GeometryComplex Variables (math.CV)0101 mathematicsEquivalence (formal languages)kompleksifunktiotMathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsMetric Geometry (math.MG)16. Peace & justiceDifferential Geometry (math.DG)Bounded functionComputer Science::Mathematical Software010307 mathematical physicsMathematische Annalen
researchProduct

Failure of the local-to-global property for CD(K,N) spaces

2016

Given any K and N we show that there exists a compact geodesic metric measure space satisfying locally the CD(0,4) condition but failing CD(K,N) globally. The space with this property is a suitable non convex subset of R^2 equipped with the l^\infty-norm and the Lebesgue measure. Combining many such spaces gives a (non compact) complete geodesic metric measure space satisfying CD(0,4) locally but failing CD(K,N) globally for every K and N.

Mathematics - Differential GeometryDiscrete mathematicsProperty (philosophy)GeodesicLebesgue measureExistential quantification010102 general mathematicsMetric Geometry (math.MG)Space (mathematics)01 natural sciencesMeasure (mathematics)Theoretical Computer ScienceMathematics (miscellaneous)Mathematics - Metric GeometryDifferential Geometry (math.DG)0103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematics53C23 (Primary) 28A33 49Q20 (Secondary)MathematicsANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
researchProduct

Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below

2013

We prove existence and uniqueness of optimal maps on $RCD^*(K,N)$ spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation.

Mathematics - Differential GeometryExponentiationLower Ricci bounds; Optimal maps; Optimal transport; RCD spaces01 natural sciencesMeasure (mathematics)Combinatoricssymbols.namesakeMathematics - Metric GeometryRCD spacesSettore MAT/05 - Analisi MatematicaFOS: MathematicsOptimal transportMathematics::Metric GeometryUniqueness0101 mathematicsLower Ricci bounds[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]Ricci curvatureMathematicsDiscrete mathematics010102 general mathematicsMetric Geometry (math.MG)Absolute continuity16. Peace & justice010101 applied mathematicsMathematics::LogicDifferential geometryDifferential Geometry (math.DG)Fourier analysisBounded functionsymbolsOptimal mapsGeometry and Topology
researchProduct

Bicycle paths, elasticae and sub-Riemannian geometry

2020

We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).

Mathematics - Differential GeometryGeodesicGeneral Physics and AstronomyGeometryRiemannian geometry01 natural sciencessymbols.namesakeMathematics - Metric GeometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematical PhysicsMathematics53C17 (Primary) 53A17 53A04 (Secondary)Group (mathematics)Plane (geometry)Applied Mathematics010102 general mathematicsMetric Geometry (math.MG)Statistical and Nonlinear Physics010101 applied mathematicsDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsMetric (mathematics)Euler's formulasymbolsNonlinearity
researchProduct

Isometries of nilpotent metric groups

2016

We consider Lie groups equipped with arbitrary distances. We only assume that the distance is left-invariant and induces the manifold topology. For brevity, we call such object metric Lie groups. Apart from Riemannian Lie groups, distinguished examples are sub-Riemannian Lie groups and, in particular, Carnot groups equipped with Carnot-Carath\'eodory distances. We study the regularity of isometries, i.e., distance-preserving homeomorphisms. Our first result is the analyticity of such maps between metric Lie groups. The second result is that if two metric Lie groups are connected and nilpotent then every isometry between the groups is the composition of a left translation and an isomorphism.…

Mathematics - Differential GeometryIsometriesPure mathematicsA ne transformationsGeneral Mathematics22E25 53C30 22F30Group Theory (math.GR)01 natural sciencesisometriesMathematics - Metric GeometryetäisyysFOS: MathematicsMathematics (all)Mathematics::Metric GeometryA ne transformations; Isometries; Nilpotent groups; Nilradical; Mathematics (all)0101 mathematicsdistanceMathematicsLie groupsmatematiikkamathematicsta111010102 general mathematicsLie groupMetric Geometry (math.MG)nilpotent groupsnilradicalComposition (combinatorics)Manifoldaffine transformationsNilpotentDifferential Geometry (math.DG)Nilpotent groupsMetric (mathematics)IsometryNilradicalIsomorphismMathematics - Group TheoryCounterexampleJournal de l’École polytechnique — Mathématiques
researchProduct

Polynomial and horizontally polynomial functions on Lie groups

2022

We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $\mathfrak g$ of left-invariant vector fields on a Lie group $\mathbb G$ and we assume that $S$ Lie generates $\mathfrak g$. We say that a function $f:\mathbb G\to \mathbb R$ (or more generally a distribution on $\mathbb G$) is $S$-polynomial if for all $X\in S$ there exists $k\in \mathbb N$ such that the iterated derivative $X^k f$ is zero in the sense of distributions. First, we show that all $S$-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent $k$ in the previous defini…

Mathematics - Differential GeometryLeibman Polynomialnilpotent Lie groupsApplied Mathematicspolynomithorizontally affine functionsryhmäteoriaMetric Geometry (math.MG)polynomial mapsGroup Theory (math.GR)harmoninen analyysiFunctional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaMathematics - Metric GeometryDifferential Geometry (math.DG)precisely monotone setsFOS: Mathematicspolynomial on groupsMathematics - Group TheoryAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Cheeger-harmonic functions in metric measure spaces revisited

2013

Let $(X,d,\mu)$ be a complete metric measure space, with $\mu$ a locally doubling measure, that supports a local weak $L^2$-Poincar\'e inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on $(X,d,\mu)$. Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

Mathematics - Differential GeometryMathematics - Analysis of PDEsDifferential Geometry (math.DG)Mathematics - Metric GeometryFOS: MathematicsMetric Geometry (math.MG)Analysis of PDEs (math.AP)
researchProduct