Search results for " Model"

showing 10 items of 16868 documents

Generalised bisection method for optimum ultrasonic ray tracing and focusing in multi-layered structures

2021

Ultrasonic testing has been used for many decades, proving itself very efficient for detecting defects in many industrial sectors. The desire to apply ultrasonic testing to geometrically complex structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics and software, is constantly pushing the applicability of ultrasonic waves to their limits. General ray tracing models, suitable for calculating the proper incident angle of single element probes and the proper time delay of phased array, are currently required. They can support the development of new imaging techniques, as Full Matrix Capture and Total Focusing Method, and the execution of …

010302 applied physicsAcoustics and UltrasonicsComputer scienceIterative methodbusiness.industryTKComputationUltrasonic testing01 natural sciencesRay tracing (physics)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineSoftware0103 physical sciencesBisection methodUltrasonic wave propagation Ray tracing Mathematical modelling Bisection method Multi-layered structures Weld inspection CompositesA priori and a posterioriUltrasonic sensorbusiness010301 acousticsAlgorithmUltrasonics
researchProduct

Partial discharges behavior under different rectified waveforms

2017

In this work, a previous software used to simulate partial discharges (PDs) under Alternating Current (AC) stress has been modified in order to evaluate the PDs behavior under a voltage stress close to the Direct Current (DC) waveform. By using a full-wave and a half-wave rectifier, the specimen with an air void defects has been subjected to a gradual constant stress. Finally, a capacitive filter has been inserted in order to produce a steadier voltage supply. Simulation results show that under an almost DC waveform, the PDs activity become less compared to AC stress.

010302 applied physicsDC stressMaterials scienceHVDCPD modelbusiness.industryAcousticsCapacitive sensingDirect currentElectrical engineeringRectified waveform01 natural sciencesSpace charge010305 fluids & plasmaslaw.inventionStress (mechanics)RectifierSettore ING-IND/31 - Elettrotecnicalaw0103 physical sciencesWaveformPartial DischargebusinessAlternating currentVoltage
researchProduct

An exact method for the determination of differential leakage factors in electrical machines with non-symmetrical windings

2016

An exact and simple method for the determination of differential leakage factors in polyphase ac electrical machines with non-symmetrical windings is presented in this paper. The method relies on the properties of Gorges polygons that are used to transform an infinite series expressing the differential leakage factor into a finite sum in order to significantly simplify the calculations. Some examples are shown and discussed in order to practically demonstrate the effectiveness of the proposed method.

010302 applied physicsElectronic Optical and Magnetic Material020208 electrical & electronic engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciTopology01 natural sciencesElectronic mailElectronic Optical and Magnetic MaterialsDifferential leakage factorHarmonic analysiswindingDistribution functionmoment of inertiaElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringPolyphase systemGraphical modelnon-symmetrical windingElectrical and Electronic EngineeringGörges polygonLeakage (electronics)Mathematics
researchProduct

A Magnetohydrodynamic Auxiliary Propulsion system for docking assistance of autonomous vehicle

2016

In this article we present an approach to the description of Magnetohydrodynamic Auxiliary Propulsion system for docking assistance of autonomous vehicle. Preliminarily, an analytical model which includes an electromagnetic model and a thermal model is presented. Successively, in order to move beyond the analytical model, a 3-D MHD modeling tool and a Runge Kutta method based solver are presented and they are used to investigate an alternative MHD solutions. Some numerical analysis are given

010302 applied physicsEngineeringbusiness.industryNumerical analysis05 social sciencesControl engineeringOcean EngineeringSolverPropulsionSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciOceanography01 natural sciencesRunge–Kutta methodsMagnetohydrodinamic Propulsion SystemSettore ING-INF/04 - AutomaticaPhysics::Space Physics0502 economics and business0103 physical sciencesMagnetohydrodynamic driveElectromagnetic modelMagnetohydrodynamicsThermal modelbusinessInstrumentation050203 business & management
researchProduct

Resistive communications based on neuristors

2017

Memristors are passive elements that allow us to store information using a single element per bit. However, this is not the only utility of the memristor. Considering the physical chemical structure of the element used, the memristor can function at the same time as memory and as a communication unit. This paper presents a new approach to the use of the memristor and develops the concept of resistive communication.

010302 applied physicsFOS: Computer and information sciencesResistive touchscreenCommunication unitHardware_MEMORYSTRUCTURESComputer science020208 electrical & electronic engineeringComputer Science - Emerging TechnologiesSingle element02 engineering and technologyFunction (mathematics)Memristor01 natural scienceslaw.inventionEmerging Technologies (cs.ET)Unified Modeling LanguagelawPhysical chemical0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectronic engineeringElement (category theory)computercomputer.programming_language
researchProduct

Optical properties of InN nanocolumns: Electron accumulation at InN non‐polar surfaces and dependence on the growth conditions

2009

InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present atthe non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the densit…

010302 applied physicsFree electron modelElectron densityPhotoluminescenceCondensed matter physicsAbsorption spectroscopyChemistry02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencesMolecular physics0103 physical sciencesPhotoluminescence excitation0210 nano-technologyMolecular beam epitaxyphysica status solidi c
researchProduct

Key factors towards a high-quality additive manufacturing process with ABS material

2019

Abstract Additive Manufacturing technologies have gained a lot of popularity during the past years. The current challenge being the transition of this manufacturing technology from prototype oriented towards mass production. In order to achieve this, fabrication times and mechanical parameters must be improved. This paper aims to identify which are the parameters that have the highest influence on parts obtained with fused deposition modeling (FDM) technology from ABS material. In addition, this study identifies which are the most accurate methods to test the mechanical properties of FDM parts while still respecting ASTM standard for testing the tensile properties of plastics. It was found …

010302 applied physicsManufacturing technologyMaterials scienceFabricationFused deposition modelingAstm standardManufacturing processbusiness.industrymedia_common.quotation_subject02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionKey factorslaw0103 physical sciencesUltimate tensile strengthQuality (business)0210 nano-technologyProcess engineeringbusinessmedia_commonMaterials Today: Proceedings
researchProduct

Electromagnetic and Thermal Modelling for Calculating Ageing Rate of Distribution Transformers

2018

Prediction of the lifetime for transformers is very important for maintenance and asset management. Finite element analysis was performed on a 5 MVA distribution transformers with aluminium foil-type windings and voltage rating 6600 V/23000 V. Electromagnetic modelling is implemented on the full three-phase transformer to calculate distributed losses, taking the skin effect into account. To reduce the computational burden, the distributed losses in one phase are used to analyse temperature rise in one phase of the transformer. The temperature rise results were used to determine the ageing rate of the transformer. Further, the influence of ambient temperature and cooling on the temperature r…

010302 applied physicsMaterials science020209 energyNuclear engineeringchemistry.chemical_element02 engineering and technologyDistribution transformer01 natural sciencesFinite element methodElectromagnetic modellinglaw.inventionchemistryElectromagnetic coilAluminiumlaw0103 physical sciencesThermal0202 electrical engineering electronic engineering information engineeringSkin effectTransformer2018 21st International Conference on Electrical Machines and Systems (ICEMS)
researchProduct

Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

2018

Abstract Silicon single crystal growth by the Czochralski (CZ) technique is studied numerically using non-stationary mathematical models which allow to predict the evolution of the CZ system in time, including Dash neck, cone and cylindrical growth stages. The focus is on the point defect dynamics, also considering the effect of the thermal stresses. During the cylindrical stage, the crystal pull rate is temporarily reduced as in experiments by Abe et al. The crystal radius and heater power change is explicitly considered in the calculations for crystal diameters of 50, 100 and 200 mm and the agreement with experiments is discussed.

010302 applied physicsMaterials scienceSiliconField (physics)Mathematical modelchemistry.chemical_element02 engineering and technologyRadiusMechanics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesInorganic ChemistryCrystalchemistry0103 physical sciencesThermalMaterials ChemistryPoint (geometry)0210 nano-technologyFocus (optics)Journal of Crystal Growth
researchProduct

2018

Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ell…

010302 applied physicsMaterials sciencebusiness.industryDirect currentSurface plasmonPhysics::Opticschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesDrude modelSurface plasmon polaritonAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceOpticschemistryElectrical resistivity and conductivityPhysical vapor deposition0103 physical sciencesOptoelectronics0210 nano-technologybusinessTinPlasmonOptics Express
researchProduct