Search results for " Modifications"

showing 10 items of 61 documents

A Vastly Increased Chemical Variety of RNA Modifications Containing a Thioacetal Structure

2018

International audience; Recently discovered new chemical entities in RNA modifications have involved surprising functional groups that enlarge the chemical space of RNA. Using LC-MS, we found over 100 signals of RNA constituents that contained a ribose moiety in tRNAs from E. coli. Feeding experiments with variegated stable isotope labeled compounds identified 37 compounds that are new structures of RNA modifications. One structure was elucidated by deuterium exchange and high-resolution mass spectrometry. The structure of msms2 i6 A (2-methylthiomethylenethio-N6-isopentenyl-adenosine) was confirmed by methione-D3 feeding experiments and by synthesis of the nucleobase. The msms2 i6 A contai…

0301 basic medicineStereochemistryThioacetal010402 general chemistry01 natural sciencesCatalysisNucleobaseisotope labelling03 medical and health scienceschemistry.chemical_compoundAcetalsRNA modificationsTandem Mass Spectrometry[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]RiboseEscherichia coliMoietySulfhydryl Compoundschemistry.chemical_classificationChemistrythioacetalsRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral Chemistryradical-SAM enzymesChemical space0104 chemical sciencesLC-MSRNA Bacterial030104 developmental biologyEnzymeNucleic Acid ConformationHydrogen–deuterium exchangeChromatography Liquid
researchProduct

Chromatin organization regulates viral egress dynamics.

2017

Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walk modelling of herpes s…

0301 basic medicineX-RAY TOMOGRAPHYvirusesmedicine.disease_cause2.2 Factors relating to physical environmentHistoneschemistry.chemical_compoundMiceINFECTION2.2 Factors relating to the physical environmentREPLICATION COMPARTMENTSAetiologyVirus ReleaseMicroscopyMultidisciplinaryMicroscopy ConfocalQRMICROSCOPYChromatin3. Good healthChromatinCell biologyTIMEOther Physical Sciencesmedicine.anatomical_structureInfectious DiseasesCapsidConfocalMedicineFemaleInfectionVESICLE FORMATIONNUCLEAR ARCHITECTUREHeterochromatinScienceBiology114 Physical sciencesArticleCell Line03 medical and health sciencesmedicineHerpes virusAnimalsCellular microbiologyNuclear export signalcell chromatinCell NucleusHERPES-SIMPLEX-VIRUSBiological TransportVirology030104 developmental biologyHerpes simplex viruschemistryViral replicationCELLS1182 Biochemistry cell and molecular biologyBiochemistry and Cell BiologyDNA virusesNucleusDNABiomarkersHISTONE MODIFICATIONSVirus Physiological PhenomenaScientific reports
researchProduct

Manganese Ions Individually Alter the Reverse Transcription Signature of Modified Ribonucleosides

2020

Reverse transcription of RNA templates containing modified ribonucleosides transfers modification-related information as misincorporations, arrest or nucleotide skipping events to the newly synthesized cDNA strand. The frequency and proportion of these events, merged from all sequenced cDNAs, yield a so-called RT signature, characteristic for the respective RNA modification and reverse transcriptase (RT). While known for DNA polymerases in so-called error-prone PCR, testing of four different RTs by replacing Mg2+ with Mn2+ in reaction buffer revealed the immense influence of manganese chloride on derived RT signatures, with arrest rates on m1A positions dropping from 82% down to 24%. Additi…

0301 basic medicinelcsh:QH426-470DNA polymerasechemistry.chemical_elementManganeseSaccharomyces cerevisiaeRT signature[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology01 natural sciencesArticle03 medical and health sciencesm1ARNA modificationsComplementary DNA[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsNucleotidem<sup>1</sup>ABase PairingGenetics (clinical)PolymeraseComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationIonsManganesebiology010405 organic chemistryRNARNA-Directed DNA Polymerase[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyreverse transcriptionMolecular biologyReverse transcriptase0104 chemical scienceslcsh:Genetics030104 developmental biologyTemplatechemistrybiology.proteinRNA[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Ribonucleosidesmanganese chloride
researchProduct

Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures

2019

Modification mapping from cDNA data has become a tremendously important approach in epitranscriptomics. So-called reverse transcription signatures in cDNA contain information on the position and nature of their causative RNA modifications. Data mining of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing in importance, and the field is still lacking effective tools. Here we present a versatile user-friendly graphical workflow system for modification calling based on machine learning. The workflow commences with a principal module for trimming, mapping, and postprocessing. The latter includes a quantification of mismatch and arrest rates with single-nucleotide re…

0301 basic medicinelcsh:QH426-470Downstream (software development)Computer scienceRT signatureMachine learningcomputer.software_genre[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyField (computer science)m1A03 medical and health sciencesRNA modifications0302 clinical medicineEpitranscriptomics[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsTechnology and CodeGalaxy platformGenetics (clinical)ComputingMilieux_MISCELLANEOUSbusiness.industryPrincipal (computer security)[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAutomationWatson–Crick faceVisualizationlcsh:Geneticsmachine learningComputingMethodologies_PATTERNRECOGNITION030104 developmental biologyWorkflow030220 oncology & carcinogenesisMolecular Medicine[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]TrimmingArtificial intelligencebusinesscomputer
researchProduct

RNA Modifications Modulate Activation of Innate Toll-Like Receptors

2019

Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have …

0301 basic medicinelcsh:QH426-470EndosomeContext (language use)ReviewBiology03 medical and health sciences0302 clinical medicineRNA modificationsGeneticsAnimalsHumansGenetics(clinical)RNA Processing Post-TranscriptionalReceptorGeneinnate immunityGenetics (clinical)Innate immune systemRNATLR7Immunity InnateCell biologyToll-like receptorslcsh:Genetics030104 developmental biologyTransfer RNAmethylation030215 immunologyGenes
researchProduct

Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis

2019

Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accept…

0301 basic medicinelcsh:QH426-470InflammationReviewmedicine.disease_causeAutoimmunityPathogenesis03 medical and health sciences0302 clinical medicineImmune systemImmunitymicroRNAGeneticsmedicineautoimmune diseasesEpigeneticsepigenetic pathwaysGenetics (clinical)DNA methylationepigeneticshistone modificationsbusiness.industrylcsh:Genetics030104 developmental biology030220 oncology & carcinogenesismiRNAsDNA methylationImmunologyrheumatic diseasesMolecular Medicinemedicine.symptombusinessFrontiers in Genetics
researchProduct

Environmental epigenetics in zebrafish

2017

Abstract It is widely accepted that the epigenome can act as the link between environmental cues, both external and internal, to the organism and phenotype by converting the environmental stimuli to phenotypic responses through changes in gene transcription outcomes. Environmental stress endured by individual organisms can also enforce epigenetic variations in offspring that had never experienced it directly, which is termed transgenerational inheritance. To date, research in the environmental epigenetics discipline has used a wide range of both model and non-model organisms to elucidate the various epigenetic mechanisms underlying the adaptive response to environmental stimuli. In this rev…

0301 basic medicinelcsh:QH426-470Settore BIO/11 - Biologia MolecolareReviewEnvironmentEpigenesis GeneticEmbryogenesi03 medical and health sciences0302 clinical medicineEnvironmental epigeneticEnvironmental epigeneticsGeneticsAnimalsEpigeneticsToxicantZebrafishMolecular BiologyOrganismZebrafishDNA methylation; Embryogenesis; Environmental epigenetics; Histone modifications; Methylome; Toxicant; Transgenerational inheritance; Zebrafish; Molecular Biology; GeneticsGeneticsDNA methylationbiologyHistone modificationsInheritance (genetic algorithm)Adaptive responseEpigenomebiology.organism_classificationHuman geneticsHistone Codelcsh:Genetics030104 developmental biologyEvolutionary biologyDNA methylationEmbryogenesisMethylomeHistone modification030217 neurology & neurosurgeryTransgenerational inheritanceEpigenetics & Chromatin
researchProduct

Non-Redundant tRNA Reference Sequences for Deep Sequencing Analysis of tRNA Abundance and Epitranscriptomic RNA Modifications

2021

Analysis of RNA by deep-sequencing approaches has found widespread application in modern biology. In addition to measurements of RNA abundance under various physiological conditions, such techniques are now widely used for mapping and quantification of RNA modifications. Transfer RNA (tRNA) molecules are among the frequent targets of such investigation, since they contain multiple modified residues. However, the major challenge in tRNA examination is related to a large number of duplicated and point-mutated genes encoding those RNA molecules. Moreover, the existence of multiple isoacceptors/isodecoders complicates both the analysis and read mapping. Existing databases for tRNA sequencing pr…

0301 basic medicinelcsh:QH426-470ved/biology.organism_classification_rank.speciesComputational biologyBiology01 natural sciencesArticleDeep sequencingdeep sequencing03 medical and health sciencesRNA modificationsRNA Transferepitranscriptome[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Escherichia coliGeneticsModel organismtRNAGeneComputingMilieux_MISCELLANEOUSGenetics (clinical)Sequence Analysis RNA010405 organic chemistryved/biologyreference sequenceHigh-Throughput Nucleotide SequencingRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyquantification0104 chemical scienceslcsh:GeneticsRNA Bacterial030104 developmental biologyTransfer RNADatabases Nucleic AcidtRNA poolBacillus subtilisReference genomeGenes
researchProduct

The consumption of snacks and soft drinks between meals may contribute to the development and to persistence of gastro-esophageal reflux disease

2019

Abstract The hypothesis The habit of snacking and drinking soft beverages between breakfast, lunch and dinner, which is very widespread in the western world, could be a primum movens, thereby contributing to the development and subsequent persistence of gastroesophageal reflux disease (GERD). What does the proposed hypothesis based on? The high prevalence of GERD suggests that it is very probably caused by factors, which are intrinsic and widespread in a western lifestyle. Ingesting snacks or imbibing soft drinks between breakfast, lunch and dinner causes additional gastric acid secretion, acid pocket formation, and additional transient lower esophageal sphincter relaxations (TLESRs) with a…

0301 basic medicinemedicine.medical_specialtyCarbonated BeveragesOverweightGastroenterologyEsophageal Sphincter LowerGastric AcidHiatal hernia03 medical and health sciencesEsophagus0302 clinical medicineRisk FactorsInternal medicinePrevalencemedicineHumansObesityEsophagusLife StyleGastro-esophageal Reflux GERD Lifestyle modifications Transient Lower Esophageal Sphincter Relaxation TLESR Snacking and Soft drinks consumption Hiatal Hernia Overweight ObesitySnackingbusiness.industrydigestive oral and skin physiologyRefluxfood and beveragesFeeding BehaviorGeneral MedicineModels TheoreticalOverweightmedicine.diseaseObesitydigestive system diseasesDietHernia Hiatal030104 developmental biologymedicine.anatomical_structureGastroesophageal RefluxGERDGastric acidSnacksmedicine.symptombusiness030217 neurology & neurosurgery
researchProduct

Obesogenic Diets Cause Alterations on Proteins and Theirs Post-Translational Modifications in Mouse Brains

2021

Obesity constitutes a major global health threat and is associated with a variety of diseases ranging from metabolic and cardiovascular disease, cancer to neurodegeneration. The hallmarks of neurodegeneration include oxidative stress, proteasome impairment, mitochondrial dysfunction and accumulation of abnormal protein aggregates as well as metabolic alterations. As an example, in post-mortem brain of patients with Alzheimer’s disease (AD), several studies have reported reduction of insulin, insulin-like growth factor 1 and insulin receptor and an increase in tau protein and glycogen-synthase kinase-3β compared to healthy controls suggesting an impairment of metabolism in the AD patient’s …

0301 basic medicinemedicine.medical_specialtyRC620-627Endocrinology Diabetes and Metabolismmedicine.medical_treatmentTau proteinObesity nutrition brain impairment proteomics post-translational modificationsBrain damageMitochondrionProteomicsmedicine.disease_causeSettore BIO/09 - Fisiologia03 medical and health sciencesproteomics0302 clinical medicineInternal medicinepost-translational modificationsmedicineTX341-641ObesityNutritional diseases. Deficiency diseasesOriginal ResearchSettore MED/04 - Patologia GeneraleNutrition and DieteticsbiologyNutrition. Foods and food supplyInsulinNeurodegenerationmedicine.diseasebrain impairmentInsulin receptornutrition030104 developmental biologyEndocrinologybiology.proteinmedicine.symptom030217 neurology & neurosurgeryOxidative stressFood ScienceNutrition and Metabolic Insights
researchProduct