Search results for " Nanostructures"
showing 10 items of 128 documents
Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices
2019
[EN] Based on the unique ability of defibrillated sepiolite (SEP) to form stable and homogeneous colloidal dispersions of diverse types of nanoparticles in aqueous media under ultrasonication, multicomponent conductive nanoarchitectured materials integrating halloysite nanotubes (HNTs), graphene nanoplatelets (GNPs) and chitosan (CHI) have been developed. The resulting nanohybrid suspensions could be easily formed into films or foams, where each individual component plays a critical role in the biocomposite: HNTs act as nanocontainers for bioactive species, GNPs provide electrical conductivity (enhanced by doping with MWCNTs) and, the CHI polymer matrix introduces mechanical and membrane pr…
Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals
2020
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotrop…
Carbon Nanostructures: Covalent and Macromolecular Chemistry
2012
The aim of this introductory chapter is to bring to the attention of the readers the achievements made in the chemistry of carbon nanostructures and, mostly, in the chemistry of fullerenes, carbon nanotubes (CNTs), and the most recent graphenes. Since the discovery of fullerenes in 1985 and their further preparation in multigram amounts, the chemistry and reactivity of thesemolecular carbon allotropes have been well established. Actually, this chemical reactivity has been used as a benchmark for further studies carried out in the coming carbon nanotubes (single andmultiple wall) and graphenes. Assuming that the fundamental chemistry of fullerenes is known and basically corresponds to that o…
Confinement of chiral molecules in reverse micelles: FT-IR, polarimetric and VCD investigation on the state of dimethyl tartrate in sodium bis(2-ethy…
2008
Abstract The state of d and l -dimethyl tartrate confined within dry sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles dispersed in CCl 4 has been investigated by FT-IR spectroscopy, polarimetry, and vibrational circular dichroism (VCD). Measurements have been performed at 25 °C as a function of the solubilizate-to-surfactant molar ratio ( R ) at a fixed AOT concentration (0.158 M). The analysis of experimental data is consistent with the hypothesis that both enantiomers of dimethyl tartrate are mainly entrapped in the reverse micelles and located in proximity to the surfactant head-group region. The formation of this interesting self-organized chiral nanostructure involves som…
A simple method to fabricate high-performance nanostructured WO3 photocatalysts with adjusted morphology in the presence of complexing agents
2017
[EN] The rich and complex chemistry of tungsten was employed to synthesize innovative WO3 nanoplatelets/nanosheets by simple anodization in acidic electrolytes containing different concentrations of complexing agents or ligands, namely F- and H2O2. The morphological and photoelectrochemical properties of these nanostructures were characterized. The best of these nanostructures generated stable photocurrent densities of ca. 1.8 mA cm(-2) at relatively low bias potentials (for WO3) of 0.7 V-Ag/AgCl under simulated solar irradiation, which can be attributed to a very high active surface area. This work demonstrates that the morphology and dimensions of these nanostructures, as well as their ph…
Preparation and characterisation of Ce:YAG -polycarbonate composites for white LED
2016
Ce:YAG-polycarbonate composites were prepared with several amounts of Ce:YAG in the range 0.1-5 wt.% by using melt compounding. The structure and morphology of the composites were investigated by means of X-ray diffractometry and transmission electron microscopy. The optical properties of the composites were studied by using photoluminescence spectroscopy. The intermolecular interaction between the polymer and the filler surface was investigated using 13C cross-polarization magic-angle spinning NMR spectroscopy (13C {1H} CP-MAS NMR). The results showed that the dispersion of the particles in the polymer, and the optical properties, depend on the Ce:YAG amount. The composites were combined w…
Nickel-Indium Sulphide Core-Shell Nonostructures Obtained by Spray-ILGAR Deposition
2013
Ni nanowires (NWs) of different lengths were fabricated by pulsed potentiostatic deposition within pores of polycarbonate membranes. After template dissolution, substrates underwent sequential Spray-ILGAR® depositions of thin indium sulphide films. The effect of deposition temperature was also investigated. For low number of deposition cycles, results showed complete and uniform covering of metal over the entire length of NWs, with formation of Ni - In2S3 core-shell structures. However, with increasing number of deposition cycles films became uneven and crusty, especially at higher temperatures, owing to the simultaneous formation of nickel sulfide. This drawback was almost eliminated doubl…
DNA-Based Enzyme Reactors and Systems
2016
During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular…
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
2017
Authors are grateful to Reinis Ignatans for XRD measurements.