Search results for " Neoplastic"

showing 10 items of 662 documents

Induction of Chromosome Instability by Activation of Yes-Associated Protein and Forkhead Box M1 in Liver Cancer

2016

Background & Aims Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. Methods We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan–Meier curves. We analyze…

0301 basic medicineTime FactorsMuscle ProteinsKaplan-Meier Estimatemedicine.disease_causeChromosome instabilityYAP1Liver NeoplasmsGastroenterologyTEA Domain Transcription FactorsHep G2 CellsPrognosisDNA-Binding ProteinsGene Expression Regulation NeoplasticPhenotypeHippo signalingRNA InterferenceSignal TransductionCarcinoma HepatocellularPorphyrinsAntineoplastic AgentsMice TransgenicBiologyTransfection03 medical and health sciencesChromosomal InstabilitymedicineAnimalsHumansGene silencingGenetic Predisposition to DiseaseAdaptor Proteins Signal TransducingHippo signaling pathwayHepatologyGene Expression ProfilingForkhead Box Protein M1VerteporfinYAP-Signaling ProteinsHCCSPhosphoproteinsThiostreptonMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyTissue Array AnalysisFOXM1Cancer researchTranscriptomeCarcinogenesisTranscription FactorsGastroenterology
researchProduct

Hypoxia-Induced miR-675-5p Supports β-Catenin Nuclear Localization by Regulating GSK3-β  Activity in Colorectal Cancer Cell Lines

2020

The reduction of oxygen partial pressure in growing tumors triggers numerous survival strategies driven by the transcription factor complex HIF1 (Hypoxia Inducible Factor-1). Recent evidence revealed that HIF1 promotes rapid and effective phenotypic changes through the induction of non-coding RNAs, whose contribution has not yet been fully described. Here we investigated the role of the hypoxia-induced, long non-coding RNA H19 (lncH19) and its intragenic miRNA (miR-675-5p) into HIF1-Wnt crosstalk. During hypoxic stimulation, colorectal cancer cell lines up-regulated the levels of both the lncH19 and its intragenic miR-675-5p. Loss of expression experiments revealed that miR-675-5p inhibitio…

0301 basic medicineTranscription factor complexKaplan-Meier Estimatelcsh:Chemistry0302 clinical medicineGSK-3poxiahylcsh:QH301-705.5long non-coding H19Spectroscopybeta CateninKinaseChemistryGeneral MedicineCell HypoxiaComputer Science ApplicationsCell biologyGene Expression Regulation Neoplastic030220 oncology & carcinogenesisColorectal NeoplasmsProtein BindingActive Transport Cell Nucleuscolorectal cancermiR-675TransfectionCatalysisArticleInorganic Chemistry03 medical and health sciencesCell Line TumormicroRNAGene silencingHumansPhysical and Theoretical ChemistryMolecular BiologyGlycogen Synthase Kinase 3 betahypoxiaOrganic ChemistryRNAComputational Biologyβ-cateninHCT116 CellsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Microscopy FluorescenceCateninMutationNuclear localization sequenceInternational Journal of Molecular Sciences
researchProduct

11q Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma

2020

High-risk 11q deleted neuroblastomas typically display undifferentiated/poorly differentiated morphology. Neuroblastoma is thought to develop from Schwann cell precursors and undifferentiated neural crest (NC) derived cells. It is therefore vital to understand mechanisms involved in the block of differentiation. We identify an important role for oncogenic ALK-ERK1/2-SP1 signaling in maintenance of undifferentiated NC-derived progenitors via repression of DLG2, a tumor suppressor in neuroblastoma. DLG2 is expressed in the ‘bridge signature’ that represents the transcriptional transition state when neural crest cells or Schwann Cell Precursors become chromaffin cells of the adrenal gland. We …

0301 basic medicineTranscription GeneticCarcinogenesisChromaffin CellsRetinoic acidlaw.inventionNeuroblastomachemistry.chemical_compound0302 clinical medicinelawNerve Growth FactorMedicine and Health Sciencesretinoic acidAnaplastic Lymphoma Kinaselcsh:QH301-705.5NeuronsMice Inbred BALB CNeural crestCell DifferentiationPrognosisCandidate Tumor Suppressor GeneDLG2Up-RegulationCell biologyGene Expression Regulation NeoplasticERKPhenotypeTreatment Outcomemedicine.anatomical_structureFemaleChromosome Deletiontumor suppressorMAP Kinase Signaling SystemSp1 Transcription FactorSchwann cellGenetics and Molecular BiologyTretinoinBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesAdrenergic AgentsCell Line TumorNeuroblastomamedicineAnimalsHumansProgenitor cellGenePsychological repressionCell ProliferationChromosomes Human Pair 11Tumor Suppressor Proteinsmedicine.disease030104 developmental biologyALKlcsh:Biology (General)chemistryTrk receptorGeneral BiochemistrySuppressorSchwann CellsGuanylate Kinases030217 neurology & neurosurgerySSRN Electronic Journal
researchProduct

E4BP4/NFIL3 modulates the epigenetically repressed RAS effector RASSF8 function through histone methyltransferases

2018

RAS proteins are major human oncogenes, and most of the studies are focused on enzymatic RAS effectors. Recently, nonenzymatic RAS effectors (RASSF, RAS association domain family) have garnered special attention because of their tumor-suppressive properties in contrast to the oncogenic potential of the classical enzymatic RAS effectors. Whereas most members of RASSF family are deregulated by promoter hypermethylation, RASSF8 promoter remains unmethylated in many cancers but the mechanism(s) of its down-regulation remains unknown. Here, we unveil E4BP4 as a critical transcriptional modulator repressing RASSF8 expression through histone methyltransferases, G9a and SUV39H1. In line with these …

0301 basic medicineTumor suppressor geneBreast NeoplasmsBiologyBiochemistryEpigenesis Genetic03 medical and health sciences0302 clinical medicineHistocompatibility AntigensHistone methylationHumansEpigeneticsMolecular BiologySUV39H1EffectorTumor Suppressor ProteinsNFIL3Molecular Bases of DiseaseCell BiologyHistone-Lysine N-MethyltransferaseMethyltransferasesCell biologyNeoplasm ProteinsGene Expression Regulation NeoplasticRepressor Proteins030104 developmental biologyBasic-Leucine Zipper Transcription FactorsHEK293 Cells030220 oncology & carcinogenesisHistone methyltransferaseMCF-7 CellsFemaleFunction (biology)
researchProduct

In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment

2016

Abstract: An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expre…

0301 basic medicineUterine Cervical NeoplasmMAPK3Uterine Cervical NeoplasmsBioinformaticsHeLa CellMitogen-Activated Protein Kinase0302 clinical medicineTransforming Growth Factor betaMedicineOligonucleotide Array Sequence AnalysisCancerCervical cancerABLCell CycleIn silico pathway analysiCell cycleGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisFemaleDNA microarrayMitogen-Activated Protein KinasesTreatment targetResearch PaperHumanin silico pathway analysisMAP Kinase Signaling SystemIn silicoComputational biologytreatment targetsProto-Oncogene Proteins c-myc03 medical and health sciencesCell Line TumorBiomarkers TumorHumansComputer SimulationAmino Acid SequenceBiologyCervical carcinomabusiness.industryOligonucleotide Array Sequence AnalysiGene Expression ProfilingCancerComputational Biologymedicine.diseaseChromatin Assembly and DisassemblyGene expression profiling030104 developmental biologyHuman medicinebusinessHeLa CellsOncotarget
researchProduct

GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion.

2019

Growth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly,…

0301 basic medicine[SDV]Life Sciences [q-bio]Cyclin ACellChick EmbryoChorioallantoic Membrane0302 clinical medicineCell MovementCyclin D1HCCbiologyNeovascularization PathologicCell DifferentiationHep G2 CellsCell cycleCadherinsHuh7 cells3. Good health[SDV] Life Sciences [q-bio]Gene Expression Regulation NeoplasticGrowth Differentiation Factorsmedicine.anatomical_structure030220 oncology & carcinogenesisBone Morphogenetic ProteinsMolecular MedicineLiver cancerCyclin-Dependent Kinase Inhibitor p27Signal Transduction[SDV.CAN]Life Sciences [q-bio]/CancerCyclin ACell cycleHep3B cells03 medical and health sciencesCyclin D1Downregulation and upregulation[SDV.CAN] Life Sciences [q-bio]/CancerAntigens CDCell Line TumorOccludinSpheroids CellularmedicineAnimalsHumansViability assayMolecular BiologyCell Proliferation[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyCyclin-Dependent Kinase 6[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology030104 developmental biologyCell cultureGDF11biology.proteinCancer researchCyclin-dependent kinase 6Snail Family Transcription FactorsBiochimica et biophysica acta. Molecular basis of disease
researchProduct

Inhibition of GLI2 with antisense-oligonucleotides: A potential therapy for the treatment of bladder cancer.

2019

The sonic hedgehog (SHH) signaling pathway plays an integral role in the maintenance and progression of bladder cancer (BCa) and SHH inhibition may be an efficacious strategy for BCa treatment. We assessed an in-house human BCa tissue microarray and found that the SHH transcription factors, GLI1 and GLI2, were increased in disease progression. A panel of BCa cell lines show that two invasive lines, UM-UC-3 and 253J-BV, both express these transcription factors but UM-UC-3 produces more SHH ligand and is less responsive in viability to pathway stimulation by recombinant human SHH or smoothened agonist, and less responsive to inhibitors including the smoothened inhibitors cyclopamine and SANT-…

0301 basic medicineanimal structuresCyclopaminePhysiologyCell Survivalmedicine.medical_treatmentClinical BiochemistryAntineoplastic AgentsZinc Finger Protein Gli2Targeted therapy03 medical and health scienceschemistry.chemical_compound0302 clinical medicineGLI1GLI2Cell Line TumormedicineHumansSonic hedgehogskin and connective tissue diseasesTranscription factorbiologyChemistryCell CycleNuclear ProteinsCell Biology3. Good healthGene Expression Regulation Neoplastic030104 developmental biologyUrinary Bladder Neoplasms030220 oncology & carcinogenesisbiology.proteinCancer researchSignal transductionSmoothenedJournal of cellular physiology
researchProduct

Loss of MCL1 function sensitizes the MDA-MB-231 breast cancer cells to rh-TRAIL by increasing DR4 levels.

2019

Triple-negative breast cancer (TNBC) is a form of BC characterized by high aggressiveness and therapy resistance probably determined by cancer stem cells. MCL1 is an antiapoptotic Bcl-2 family member that could limit the efficacy of anticancer agents as recombinant human tumor necrosis factor related apoptosis-inducing ligand (rh-TRAIL). Here, we investigated MCL1 expression in TNBC tissues and cells. We found MCL1 differentially expressed (upregulated or downregulated) in TNBC tissues. Furthermore, in comparison to the human mammary epithelial cells, we found that MDA-MB-231 cells show similar messenger RNA levels but higher MCL1 protein levels, whereas it resulted downregulated in MDA-MB-…

0301 basic medicinecancer stem cellIndolesPhysiologyCell SurvivalClinical BiochemistryCellPopulationApoptosisTNF-Related Apoptosis-Inducing Ligand03 medical and health sciences0302 clinical medicineCancer stem cellSettore BIO/10 - BiochimicaCell Line Tumormedicinerh-TRAILBiomarkers TumorGene silencingHumansViability assayGene SilencingeducationCell ShapeCell ProliferationMembrane Potential Mitochondrialeducation.field_of_studySulfonamidesChemistryCell growthCell CycleCell BiologyCell cycleRecombinant ProteinsGene Expression Regulation NeoplasticReceptors TNF-Related Apoptosis-Inducing Ligand030104 developmental biologymedicine.anatomical_structureMCL1ApoptosisDR4 receptor030220 oncology & carcinogenesisCancer researchtriple-negative breast cancerMyeloid Cell Leukemia Sequence 1 ProteinJournal of cellular physiology
researchProduct

MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer

2017

// Giuseppina Roscigno 1, 2, * , Ilaria Puoti 1, 2, * , Immacolata Giordano 1 , Elvira Donnarumma 3 , Valentina Russo 1 , Alessandra Affinito 1 , Assunta Adamo 1 , Cristina Quintavalle 1, 2 , Matilde Todaro 4 , Maria dM Vivanco 5 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS, CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Department of Pathobiology and Medical Biotechnology, University of Palermo, Palermo, Italy 5 CIC bioGUNE, Centre for Cooperative Research in Biosciences, Derio, Spain * These authors have contributed equally to the paper as first authors Correspondence to: Gerolama Condore…

0301 basic medicinecancer stem cellsApoptosisStem cell markermedicine.disease_causemicroRNAs Breast cancer Cancer stem cells BimL FIH1Mixed Function OxygenasesAntineoplastic Agent0302 clinical medicineCell MovementTumor Cells CulturedCell Self RenewalMixed Function OxygenaseBimLmicroRNACell HypoxiamicroRNAsGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisNeoplastic Stem CellsFemaleBreast NeoplasmAdult stem cellHumanResearch PaperFIH1BimL; FIH1; breast cancer; cancer stem cells; microRNAsAntineoplastic AgentsBreast Neoplasms03 medical and health sciencesBreast cancerbreast cancerDownregulation and upregulationCancer stem cellmicroRNAmedicineBiomarkers TumorHumansCell Proliferationbusiness.industryCancer stem cellApoptosiRepressor Proteinmedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitMolecular medicineRepressor Proteins030104 developmental biologyDrug Resistance NeoplasmImmunologyCancer researchNeoplastic Stem CellCisplatinCarcinogenesisbusiness
researchProduct

Intra-tumour heterogeneity of diffuse large B-cell lymphoma involves the induction of diversified stroma-tumour interfaces

2020

Abstract Background Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. Methods Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of d…

0301 basic medicinediffuse large B-cell lymphoma; digital spatial profiling; intra-tumour heterogeneity; microenvironment; SPARClcsh:MedicineMice0302 clinical medicineimmune system diseaseshemic and lymphatic diseasesTumor MicroenvironmentIn Situ Hybridizationlcsh:R5-920Matricellular proteinGeneral MedicineDiffuse large B-cell lymphomaPrognosisGene Expression Regulation NeoplasticPhenotype030220 oncology & carcinogenesisLymphoma Large B-Cell Diffuselcsh:Medicine (General)Research PaperStromal cellMicroenvironmentTumour heterogeneityBiologySettore MED/08 - Anatomia PatologicaModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyImmunophenotypingGenetic Heterogeneity03 medical and health sciencesImmune systemCell Line TumorBiomarkers TumormedicineAnimalsHumansEpigeneticsSequence Analysis RNAGene Expression Profilinglcsh:RMesenchymal stem cellComputational BiologySPARCDigital spatial profilingmedicine.diseaseIntra-tumour heterogeneityDisease Models Animal030104 developmental biologyCancer researchNeoplastic cellStromal CellsTranscriptomeDiffuse large B-cell lymphoma
researchProduct