Search results for " Optical properties"
showing 10 items of 35 documents
Nonlocal properties of entangled two-photon generalized binomial states in two separate cavities
2007
We consider entangled two-photon generalized binomial states of the electromagnetic field in two separate cavities. The nonlocal properties of this entangled field state are analyzed by studying the electric field correlations between the two cavities. A Bell's inequality violation is obtained using an appropriate dichotomic cavity operator, that is in principle measurable.
Photosensitivity of SiO2–Al and SiO2–Na glasses under ArF (193 nm) laser
2009
Abstract Photosensitivity of SiO 2 –Al and SiO 2 –Na glass samples was probed by means of the induced optical absorption and luminescence as well as by electron spin-resonance (ESR) after irradiation with excimer-laser photons (ArF, 193 nm). Permanent visible darkening in the case of SiO 2 –Al and transient, life time about one hour, visible darkening in the case of SiO 2 –Na was found under irradiation at 290 K. No darkening was observed at 80 K for either kind of material. This investigation is dedicated to revealing the electronic processes responsible for photosensitivity at 290 and 80 K. The photosensitivity of both materials is related to impurity defects excited directly in the case …
Linear and nonlinear optical properties of a series of Ni-dithiolene derivatives
2009
Some linear and nonlinear optical (NLO) properties of Ni(SCH)4 and several of its derivatives have been computed by employing a series of basis sets and a hierarchy of methods (e.g., HF, DFT, coupled cluster, and multiconfigurational techniques). The electronic structure of Ni(SCH)4 has been also analyzed by using CASSCF/CASPT2, ab initio valence bond, and DFT methods. In particular we discuss how the diradicaloid character (DC) of Ni(SCH)4 significantly affects its NLO properties. The quasidegeneracy of the two lowest-energy singlet states 1 mathg and 1 math1u, the clear DC nature of the former, and the very large number of low-lying states enhance the NLO properties values. These particul…
Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr3 Nanocrystals
2019
| openaire: EC/H2020/820423/EU//S2QUIP We report a hollow-core negative-curvature fiber (HC-NCF) optical signal amplifier fabricated by the filling of the air microchannels of the fiber with all-inorganic CsPbBr3 perovskite nanocrystals (PNCs). The optimum fabrication conditions were found to enhance the optical gain, up to +3 dB in the best device. Experimental results were approximately reproduced by a gain assisted mechanism based on the nonlinear optical properties of the PNCs, indicating that signal regeneration can be achieved under low pump powers, much below the threshold of stimulated emission. The results can pave the road of new functionalities of the HC-NCF with PNCs, such as op…
Properties and generation by irradiation of germanium point defects in Ge-doped silica
2012
Ge doped amorphous silicon dioxide (Ge doped silica) has attracted the attention of researchers for more than 50 years. This material is used in many different technological fields from electronics, to telecommunication, to optics. In particular, it is widely used for the production of optical fibers and linear and nonlinear optical devices. The optical fibers, which allow to transmit optical signals with high speed avoiding interferences, are constituted by two regions with different refractive index values: core (inner part) and cladding (external part). To increase the refractive index of the core with respect to that of cladding, Ge doping of silica is commonly used. Moreover, in the Ge…
Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes
2012
Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittanc…
Structural and optical properties of novel surfactant-coated Yb-TiO2 nanoparticle
2010
Abstract In this paper a novel hybrid approach to synthesise composite nanoparticles is presented. It is based on the laser ablation of a bulk target (Yb) immersed in a reversed micellar solution which contains nanoparticles of a different host material (TiO2 nanoparticles) previously synthesised by chemical method. This approach thus exploits the advantages of the chemical synthesis through reversed micellar solution (size control, nanoparticle stabilisation), and of the laser ablation (‘‘clean’’ synthesis, no side reactions). Central role is played by the microscopic processes controlling the deposition of the ablated Yb atoms onto the surface of TiO2 nanoparticles which actually behave a…
Structural and Optical Properties of Novel Surfactant Coated TiO2Ag Based Nanoparticles
2010
Stable dispersions of surfactant-coated TiO2–Ag based nanoparticles in apolar medium have been prepared by performing sequentially the hydrolysis of titanium(IV) isopropoxide and the reduction of Ag? in the confined space of sodium bis(2-ethylhexyl)sulfosuccinate (NaAOT) reverse micelles. Depending on the sequence length, this novel procedure allowed the synthesis of semiconductor–metal nanoparticles, nominally indicated as TiO2/Ag, TiO2/Ag/TiO2, and TiO2/Ag/TiO2/ Ag, stabilized by a monolayer of oriented surfactant molecules. The structural characterization of these nanoparticles has been performed by High Resolution Transmission Electron Microscopy (HR-TEM), while optical properties were …
Measurement of South Pole ice transparency with the IceCube LED calibration system
2013
The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube …
Linear and nonlinear optical properties of some organoxenon derivatives
2007
We employ a series of state-of-the-art computational techniques to study the effect of inserting one or more Xe atoms in HC2H and HC4H, on the linear and nonlinear optical (L&NLO) properties of the resulting compounds. It has been found that the inserted Xe has a great effect on the L&NLO properties of the organoxenon derivatives. We analyze the bonding in HXeC2H, and the change of the electronic structure, which is induced by inserting Xe, in order to rationalize the observed extraordinary L&NLO properties. The derivatives, which are of interest in this work, have been synthesized in a Xe matrix. Thus the effect of the local field (LF), due to the Xe environment, on the properties of HXeC2…