Search results for " Pd"

showing 10 items of 651 documents

Positivity, complex FIOs, and Toeplitz operators

2018

International audience; We establish a characterization of complex linear canonical transformations that are positive with respect to a pair of strictly plurisubharmonic quadratic weights. As an application, we show that the boundedness of a class of Toeplitz operators on the Bargmann space is implied by the boundedness of their Weyl symbols.

Class (set theory)Pure mathematicsFourier integral operator in the complex domainPrimary: 32U05 32W25 35S30 47B35 70H1570H15Mathematics::Classical Analysis and ODEsOcean EngineeringCharacterization (mathematics)32U05 32W25 35S30 47B35 70H15Space (mathematics)01 natural sciencesMathematics - Analysis of PDEsQuadratic equation0103 physical sciencesFOS: Mathematics0101 mathematics[MATH]Mathematics [math]MathematicsMathematics::Functional Analysispositive canonical transformationMathematics::Complex Variables32U0532W25010102 general mathematicsToeplitz matrixFunctional Analysis (math.FA)Mathematics - Functional Analysis35S30Toeplitz operatorpositive Lagrangian plane010307 mathematical physicsstrictly plurisubharmonic quadratic form47B35Analysis of PDEs (math.AP)Toeplitz operator
researchProduct

The linearized Calderón problem on complex manifolds

2019

International audience; In this note we show that on any compact subdomain of a Kähler manifold that admits sufficiently many global holomorphic functions , the products of harmonic functions form a complete set. This gives a positive answer to the linearized anisotropic Calderón problem on a class of complex manifolds that includes compact subdomains of Stein manifolds and sufficiently small subdomains of Kähler manifolds. Some of these manifolds do not admit limiting Carleman weights, and thus cannot by treated by standard methods for the Calderón problem in higher dimensions. The argument is based on constructing Morse holo-morphic functions with approximately prescribed critical points.…

Class (set theory)Pure mathematicsGeneral MathematicsHolomorphic function01 natural sciencesinversio-ongelmatSet (abstract data type)symbols.namesake[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematics[MATH]Mathematics [math]complex manifoldMathematics::Symplectic GeometryMathematicsosittaisdifferentiaaliyhtälötCalderón problemMathematics::Complex VariablesApplied MathematicsRiemann surface010102 general mathematicsLimitingStandard methodsManifold010101 applied mathematicsHarmonic function[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsinverse problemMathematics::Differential Geometrymonistot
researchProduct

Classification and non-existence results for weak solutions to quasilinear elliptic equations with Neumann or Robin boundary conditions

2021

Abstract We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable condition on the nonlinearity, a relevant consequence of our results is that we can extend to weak solutions a celebrated result obtained for stable solutions by Casten and Holland and by Matano.

Class (set theory)Trace (linear algebra)010102 general mathematicsRegular polygon01 natural sciencesRobin boundary conditionNon-existenceNonlinear systemClassification of solutionsMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematica0103 physical sciencesQuasilinear anisotropic elliptic equationsFOS: MathematicsLiouville-type theoremApplied mathematics010307 mathematical physicsIntegral formula0101 mathematicsAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

Singular solutions to p-Laplacian type equations

1999

We construct singular solutions to equations $div\mathcal{A}(x,\nabla u) = 0,$ similar to the p-Laplacian, that tend to ∞ on a given closed set of p-capacity zero. Moreover, we show that every Gδ-set of vanishing p-capacity is the infinity set of some A-superharmonic function.

Closed setSingular functionSingular solutionGeneral MathematicsMathematical analysisMathematics::Analysis of PDEsZero (complex analysis)p-LaplacianNabla symbolFunction (mathematics)Type (model theory)MathematicsArkiv för Matematik
researchProduct

A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations

2013

39p; International audience; We study at particle and kinetic level a collective behavior model based on three phenomena: self-propulsion, friction (Rayleigh effect) and an attractive/repulsive (Morse) potential rescaled so that the total mass of the system remains constant independently of the number of particles N . In the first part of the paper, we introduce the particle model: the agents are numbered and described by their position and velocity. We iden- tify five parameters that govern the possible asymptotic states for this system (clumps, spheres, dispersion, mills, rigid-body rotation, flocks) and perform a numerical analysis on the 3D setting. Then, in the second part of the paper…

Collective behaviorParticle numberKinetic energy01 natural sciencesMSC 92B05 70F99 65P40 35L50symbols.namesakecollective behavior0103 physical sciences[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Statistical physics0101 mathematicsRayleigh scattering010306 general physicsParticle systemSelf-organizationPhysicsNumerical analysisStatistical and Nonlinear Physicsattractive/repulsive potentialCondensed Matter Physicsself-organizationswarming010101 applied mathematicsClassical mechanicssymbolsSPHERES[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Blow-up collocation solutions of nonlinear homogeneous Volterra integral equations

2011

In this paper, collocation methods are used for detecting blow-up solutions of nonlinear homogeneous Volterra-Hammerstein integral equations. To do this, we introduce the concept of "blow-up collocation solution" and analyze numerically some blow-up time estimates using collocation methods in particular examples where previous results about existence and uniqueness can be applied. Finally, we discuss the relationships between necessary conditions for blow-up of collocation solutions and exact solutions.

CollocationApplied MathematicsMathematical analysisMathematics::Analysis of PDEsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Numerical Analysis (math.NA)Volterra integral equationIntegral equationMathematics::Numerical AnalysisComputational MathematicsNonlinear systemsymbols.namesakeMathematics - Analysis of PDEs45D05 45G10 65R20 34A12HomogeneousComputer Science::Computational Engineering Finance and ScienceCollocation methodFOS: MathematicssymbolsOrthogonal collocationUniquenessMathematics - Numerical AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

2016

Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations

Comparison principleApplied Mathematicsmedia_common.quotation_subjectta111010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsHardy's inequalityInfinity01 natural sciences010101 applied mathematicsQuasilinear elliptic equations0101 mathematicsAsymptotic behaviorsHardy's inequalityAnalysisMathematicsmedia_commonJournal of Mathematical Analysis and Applications
researchProduct

Nonlinear Nonhomogeneous Robin Problems with Almost Critical and Partially Concave Reaction

2020

We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator, with reaction which exhibits the competition of two Caratheodory terms. One is parametric, $$(p-1)$$-sublinear with a partially concave nonlinearity near zero. The other is $$(p-1)$$-superlinear and has almost critical growth. Exploiting the special geometry of the problem, we prove a bifurcation-type result, describing the changes in the set of positive solutions as the parameter $$\lambda >0$$ varies.

Competition phenomenacompetition phenomenanonlinear maximum principleAlmost critical growthLambda01 natural sciencesSet (abstract data type)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: Mathematics0101 mathematicsbifurcation-type resultMathematicsParametric statisticsNonlinear regularity35J20 35J60010102 general mathematicsMathematical analysisZero (complex analysis)udc:517.956.2Differential operatorBifurcation-type resultalmost critical growthNonlinear systemDifferential geometryFourier analysissymbolsnonlinear regularity010307 mathematical physicsGeometry and TopologyNonlinear maximum principleStrong comparison principlestrong comparison principleAnalysis of PDEs (math.AP)
researchProduct

Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

2014

In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different $Re$ numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous int…

Complex singularitieApplied MathematicsPrandtl numberFluid Dynamics (physics.flu-dyn)Mathematics::Analysis of PDEsFOS: Physical sciencesReynolds numberPhysics - Fluid DynamicsMathematical Physics (math-ph)MechanicsEnstrophyVortexPhysics::Fluid Dynamicssymbols.namesakeBoundary layerFlow separationBoundary-layer separationSingularityInviscid flowsymbolsSettore MAT/07 - Fisica MatematicaMathematical PhysicsViscous-inviscid interactionsMathematicsActa Applicandae Mathematicae
researchProduct

Singularity formation for Prandtl’s equations

2009

Abstract We consider Prandtl’s equations for an impulsively started disk and follow the process of the formation of the singularity in the complex plane using the singularity tracking method. We classify Van Dommelen and Shen’s singularity as a cubic root singularity. We introduce a class of initial data, uniformly bounded in H 1 , which have a dipole singularity in the complex plane. These data lead to a solution blow-up whose time can be made arbitrarily short within the class. This is numerical evidence of the ill-posedness of the Prandtl equations in H 1 . The presence of a small viscosity in the streamwise direction changes the behavior of the singularities. They stabilize at a distanc…

Complex singularitiePrandtl numberFOS: Physical sciencesRegularizing viscositySeparationPhysics::Fluid Dynamicssymbols.namesakeViscosityMathematics - Analysis of PDEsSingularityFOS: MathematicsUniform boundednessSpectral methodSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical analysisStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsPrandtl–Glauert transformationPrandtl’s equationsymbolsGravitational singularitySpectral methodComplex planeAnalysis of PDEs (math.AP)Blow–up timePhysica D: Nonlinear Phenomena
researchProduct