Search results for " Pd"
showing 10 items of 651 documents
Landis-type conjecture for the half-Laplacian
2023
In this paper, we study the Landis-type conjecture, i.e., unique continuation property from infinity, of the fractional Schrödinger equation with drift and potential terms. We show that if any solution of the equation decays at a certain exponential rate, then it must be trivial. The main ingredients of our proof are the Caffarelli-Silvestre extension and Armitage’s Liouville-type theorem. peerReviewed
Partnership in civil society : a case of building trust between non-profit associations and international NGOs in Lao PDR
2015
The purpose of this Master's thesis is to develop a context-specific substantive theory of trust building based on the experiences of development workers in Laos, as well as the methods they identify as keys to a better partnership. The research material is based on eleven interviews with civil society development workers in Vientiane, Laos. The study context is partnerships between in-country International Non-Governmental Organizations and local Non-Profit Associations. Grounded theory methods were used to collect, code and analyze the data. From the data categories emerged and were generated into a substantive process model describing how partnership trust is built over time through rela…
An overdetermined problem for the anisotropic capacity
2015
We consider an overdetermined problem for the Finsler Laplacian in the exterior of a convex domain in \({\mathbb {R}}^{N}\), establishing a symmetry result for the anisotropic capacitary potential. Our result extends the one of Reichel (Arch Ration Mech Anal 137(4):381–394, 1997), where the usual Newtonian capacity is considered, giving rise to an overdetermined problem for the standard Laplace equation. Here, we replace the usual Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of the solution is that of the so-called Wulff shape (a ball in the dual norm \(H_0\)).
A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation
2011
In this paper, we give a new proof for the fact that the distributional weak solutions and the viscosity solutions of the $p$-Laplace equation $-\diver(\abs{Du}^{p-2}Du)=0$ coincide. Our proof is more direct and transparent than the original one by Juutinen, Lindqvist and Manfredi \cite{jlm}, which relied on the full uniqueness machinery of the theory of viscosity solutions. We establish a similar result also for the solutions of the non-homogeneous version of the $p$-Laplace equation.
Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations
1998
This is the first of two papers on the zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space. In this paper we prove short time existence theorems for the Euler and Prandtl equations with analytic initial data in either two or three spatial dimensions. The main technical tool in this analysis is the abstract Cauchy-Kowalewski theorem. For the Euler equations, the projection method is used in the primitive variables, to which the Cauchy-Kowalewski theorem is directly applicable. For the Prandtl equations, Cauchy-Kowalewski is applicable once the diffusion operator in the vertical direction is inverted.
Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution
1998
This is the second of two papers on the zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space in either 2D or 3D. Under the assumption of analytic initial data, we construct solutions of Navier-Stokes for a short time which is independent of the viscosity. The Navier-Stokes solution is constructed through a composite asymptotic expansion involving the solutions of the Euler and Prandtl equations, which were constructed in the first paper, plus an error term. This shows that the Navier-Stokes solution goes to an Euler solution outside a boundary layer and to a solution of the Prandtl equations within the boundary layer. The error term is written as a sum of firs…
A remark on infinite initial values for quasilinear parabolic equations
2020
Abstract We study the possibility of prescribing infinite initial values for solutions of the Evolutionary p -Laplace Equation in the fast diffusion case p > 2 . This expository note has been extracted from our previous work. When infinite values are prescribed on the whole initial surface, such solutions can exist only if the domain is a space–time cylinder.
Polarization tensors of planar domains as functions of the admittivity contrast
2014
(Electric) polarization tensors describe part of the leading order term of asymptotic voltage perturbations caused by low volume fraction inhomogeneities of the electrical properties of a medium. They depend on the geometry of the support of the inhomogeneities and on their admittivity contrast. Corresponding asymptotic formulas are of particular interest in the design of reconstruction algorithms for determining the locations and the material properties of inhomogeneities inside a body from measurements of current flows and associated voltage potentials on the body's surface. In this work we consider the two-dimensional case only and provide an analytic representation of the polarization t…
Everywhere differentiability of viscosity solutions to a class of Aronsson's equations
2017
For any open set $\Omega\subset\mathbb R^n$ and $n\ge 2$, we establish everywhere differentiability of viscosity solutions to the Aronsson equation $$ =0 \quad \rm in\ \ \Omega, $$ where $H$ is given by $$H(x,\,p)==\sum_{i,\,j=1}^na^{ij}(x)p_i p_j,\ x\in\Omega, \ p\in\mathbb R^n, $$ and $A=(a^{ij}(x))\in C^{1,1}(\bar\Omega,\mathbb R^{n\times n})$ is uniformly elliptic. This extends an earlier theorem by Evans and Smart \cite{es11a} on infinity harmonic functions.
Compact embeddings and indefinite semilinear elliptic problems
2002
Our purpose is to find positive solutions $u \in D^{1,2}(\rz^N)$ of the semilinear elliptic problem $-\laplace u = h(x) u^{p-1}$ for $2<p$. The function $h$ may have an indefinite sign. Key ingredients are a $h$-dependent concentration-compactness Lemma and a characterization of compact embeddings of $D^{1,2}(\rz^N)$ into weighted Lebesgue spaces.