Search results for " Photoluminescence"
showing 10 items of 77 documents
Luminescence and structural properties of defects in ion implanted ZnO
2006
ZnO substrates and films were intentionally implanted with rare earth and transition metal ions. The influence of the implantation and subsequent air thermal annealing treatments on the structural and optical properties of ZnO samples were studied by using Rutherford backscattering spectrometry and low temperature photoluminescence techniques. Intraionic Tm-related emission was observed for bulk and ZnO films. Similarly, Eu and Tb-doped ZnO films follow the same trend observed in bulk samples. No intraionic related emission was observed for Eu-doped samples even being the ion in Zn sites and for the Tb-doped samples ion segregation was observed for thermal annealing temperatures above 800 °…
Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4nanocrystalline structure
2016
Carbon nanodots are a class of nanoparticles with variable structures and compositions which exhibit a range of useful optical and photochemical properties. Since nitrogen doping is commonly used to enhance the fluorescence properties of carbon nanodots, understanding how nitrogen affects their structure, electronic properties and fluorescence mechanism is important to fully unravel their potential. Here we use a multi-technique approach to study heavily nitrogen-doped carbon dots synthesized by a simple bottom-up approach and capable of bright and color-tunable fluorescence in the visible region. These experiments reveal a new variant of optically active carbonaceous dots, that is a nanocr…
Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas
2020
International audience; We investigate the influence of a static electric field on the incoherent nonlinear response of an unloaded electrically contacted nanoscale optical gap antenna. Upon excitation by a tightly focused near-infrared femtosecond laser beam, a transient elevated temperature of the electronic distribution results in a broadband emission of nonlinear photoluminescence (N-PL). We demonstrate a modulation of the yield at which driving photons are frequency up-converted by means of an external control of the electronic surface charge density. We show that the electron temperature and consequently the N-PL intensity can be enhanced or reduced depending on the command polarity a…
Effect of Hydration Procedure of Fumed Silica Precursor on the Formation of Luminescent Carbon Centers in SiO 2 :C Nanocomposites
2019
The effect of hydration procedure of fumed silica precursor on photoluminescent properties of carbonized silica (SiO2:C) nanocomposite after chemo/thermal treatments is studied. Main structural effect is the formation of chemical bonding of phenyl groups to silica surface via multiple CSiO bonding bridges. Synthesized samples demonstrate very broad photoluminescence (PL) bands in near ultraviolet and visible ranges with maximum intensity dependent on temperature of thermal annealing. Two main trends in luminescence properties are: 1) hydration-induced blue shift of PL in comparison with PL of unhydrated series; 2) red shift of PL bands with increasing synthesis temperature regardless hydr…
Temperature dependent optical properties of stacked InGaAs/GaAs quantum rings
2008
4 páginas, 3 figuras, 2 tablas.-- MADICA 2006 Conference, Fifth Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors
Insight into the defect-molecule interaction through the molecular-like photoluminescence of SiO2 nanoparticles
2016
Luminescence properties due to surface defects in SiO2 are the main keystone with particles that have nanoscale dimensions, thus motivating their investigation for many emission related applications in the last few decades. A critical issue is the role played by the atmosphere that, by quenching mechanisms, weakens both the efficiency and stability of the defects. A deep knowledge of these factors is mandatory in order to properly limit any detrimental effects and, ultimately, to offer new advantageous possibilities for their exploitation. Up to now, quenching effects have been interpreted as general defect conversion processes due to the difficulty in disentangling the emission kinetics by…
Luminescence mechanisms of defective ZnO nanoparticles.
2016
ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Ra…
Photoluminescence study of excitons in homoepitaxial GaN
2001
High-resolution photoluminescence spectra have been measured in high-quality homoepitaxial GaN grown on a free-standing GaN substrate with lower residual strain than in previous work. Unusually strong and well-resolved excitonic lines were observed. Based on free- and bound exciton transitions some important GaN parameters are derived. The Arrhenius plot of the free A exciton recombination yields a binding energy of 24.7 meV. Based on this datum, an accurate value for the band-gap energy, EG(4.3 K) = 3.506 eV, can be given. From the donor bound excitons and their “two-electron” satellites, the exciton localization energy and donor ionization energy are deduced. Finally, estimates of the ele…
Luminescence of natural α-quartz crystal with aluminum, alkali and noble ions impurities
2019
This work was supported by the Latvian Science Council Grant No lzp-2018/1–0289 .
Luminescence of localized states in oxidized and fluorinated silica glass
2019
This work was supported by the Latvian Science Council Grant No lzp-2018/1-0289.