Search results for " Photoluminescence"

showing 10 items of 77 documents

Luminescence and structural properties of defects in ion implanted ZnO

2006

ZnO substrates and films were intentionally implanted with rare earth and transition metal ions. The influence of the implantation and subsequent air thermal annealing treatments on the structural and optical properties of ZnO samples were studied by using Rutherford backscattering spectrometry and low temperature photoluminescence techniques. Intraionic Tm-related emission was observed for bulk and ZnO films. Similarly, Eu and Tb-doped ZnO films follow the same trend observed in bulk samples. No intraionic related emission was observed for Eu-doped samples even being the ion in Zn sites and for the Tb-doped samples ion segregation was observed for thermal annealing temperatures above 800 °…

Low temperature photoluminescencePhotoluminescenceMaterials scienceIon implantationTransition metalRare earthAnalytical chemistryCondensed Matter PhysicsLuminescenceRutherford backscattering spectrometryIonphysica status solidi c
researchProduct

Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4nanocrystalline structure

2016

Carbon nanodots are a class of nanoparticles with variable structures and compositions which exhibit a range of useful optical and photochemical properties. Since nitrogen doping is commonly used to enhance the fluorescence properties of carbon nanodots, understanding how nitrogen affects their structure, electronic properties and fluorescence mechanism is important to fully unravel their potential. Here we use a multi-technique approach to study heavily nitrogen-doped carbon dots synthesized by a simple bottom-up approach and capable of bright and color-tunable fluorescence in the visible region. These experiments reveal a new variant of optically active carbonaceous dots, that is a nanocr…

Materials scienceBand gapSettore FIS/01 - Fisica Sperimentalenanocarbon photoluminescence photo-physics photo-chemistryNanoparticlechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesFluorescenceSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Nanocrystalline material0104 chemical scienceschemistryNanocrystalMaterials ChemistryBeta carbon nitride0210 nano-technologyCarbonSurface statesJournal of Materials Chemistry C
researchProduct

Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas

2020

International audience; We investigate the influence of a static electric field on the incoherent nonlinear response of an unloaded electrically contacted nanoscale optical gap antenna. Upon excitation by a tightly focused near-infrared femtosecond laser beam, a transient elevated temperature of the electronic distribution results in a broadband emission of nonlinear photoluminescence (N-PL). We demonstrate a modulation of the yield at which driving photons are frequency up-converted by means of an external control of the electronic surface charge density. We show that the electron temperature and consequently the N-PL intensity can be enhanced or reduced depending on the command polarity a…

Materials scienceMetrics & More Article Recommendations nonlinear photoluminescencesurface charge density02 engineering and technology01 natural sciencesnonlinear plasmonicsElectric field0103 physical sciencesoptical gap antennas[NLIN]Nonlinear Sciences [physics]Electrical and Electronic Engineering[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsNanoscopic scalebusiness.industryCharge density021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsNonlinear systemOptoelectronicsAntenna (radio)0210 nano-technologybusinessHot electronExcitationhot electronsBiotechnology
researchProduct

Effect of Hydration Procedure of Fumed Silica Precursor on the Formation of Luminescent Carbon Centers in SiO 2 :C Nanocomposites

2019

The effect of hydration procedure of fumed silica precursor on photoluminescent properties of carbonized silica (SiO2:C) nanocomposite after chemo/thermal treatments is studied. Main structural effect is the formation of chemical bonding of phenyl groups to silica surface via multiple CSiO bonding bridges. Synthesized samples demonstrate very broad photoluminescence (PL) bands in near ultraviolet and visible ranges with maximum intensity dependent on temperature of thermal annealing. Two main trends in luminescence properties are: 1) hydration-induced blue shift of PL in comparison with PL of unhydrated series; 2) red shift of PL bands with increasing synthesis temperature regardless hydr…

Materials scienceNanocompositechemistry.chemical_elementSiO2 nanoparticles carbon cluster phenyltrimethoxysilane photoluminescence FTIR spectroscopySurfaces and InterfacesCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringchemistryMaterials ChemistryElectrical and Electronic EngineeringLuminescenceCarbonFumed silicaphysica status solidi (a)
researchProduct

Temperature dependent optical properties of stacked InGaAs/GaAs quantum rings

2008

4 páginas, 3 figuras, 2 tablas.-- MADICA 2006 Conference, Fifth Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors

Materials sciencePhotoluminescenceAtmospheric escapeTime resolved photoluminescenceExcitonBioengineeringThermionic emissionActivation energyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectBiomaterialsCondensed Matter::Materials ScienceMechanics of MaterialsExcited stateQuantum ringsVertical stacksAtomic physicsQuantumRecombination
researchProduct

Insight into the defect-molecule interaction through the molecular-like photoluminescence of SiO2 nanoparticles

2016

Luminescence properties due to surface defects in SiO2 are the main keystone with particles that have nanoscale dimensions, thus motivating their investigation for many emission related applications in the last few decades. A critical issue is the role played by the atmosphere that, by quenching mechanisms, weakens both the efficiency and stability of the defects. A deep knowledge of these factors is mandatory in order to properly limit any detrimental effects and, ultimately, to offer new advantageous possibilities for their exploitation. Up to now, quenching effects have been interpreted as general defect conversion processes due to the difficulty in disentangling the emission kinetics by…

Materials sciencePhotoluminescenceCONVERSION PROCESSMOLECULAR ENVIRONMENTSURFACE DEFECTSGeneral Chemical EngineeringNanotechnologyLUMINESCENCE PROPERTIES02 engineering and technology010402 general chemistry01 natural sciencesNANOSCALE DIMENSIONSMOLECULESCARBON DIOXIDEDeep knowledgeNANOPARTICLESMoleculeSilica nanoparticles Photoluminescence Quenching Surface defects Defect-molecule interactionLUMINESCENCE INTENSITYDEFECT INTERACTIONSQuenching (fluorescence)QUENCHING MECHANISMSSettore FIS/01 - Fisica SperimentaleGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMOLECULE INTERACTIONSSio2 nanoparticlesLUMINESCENCELIGHT EMISSION0210 nano-technologyLuminescenceQUENCHING
researchProduct

Luminescence mechanisms of defective ZnO nanoparticles.

2016

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Ra…

Materials sciencePhotoluminescenceGeneral Physics and AstronomyNanotechnology02 engineering and technologyElectrontime resolved photoluminescence010402 general chemistry01 natural sciencessymbols.namesakeLattice constantPhysical and Theoretical ChemistryHigh-resolution transmission electron microscopyRamanFIS/03 - FISICA DELLA MATERIAWurtzite crystal structurebusiness.industrySettore FIS/01 - Fisica Sperimentale021001 nanoscience & nanotechnology0104 chemical sciencesAbsorption edgeZnO nanoparticles laser ablation Luminescence microscopy excitons defectssymbolsTEMZnOOptoelectronicsoxide nanoparticle0210 nano-technologybusinessRaman spectroscopyLuminescencePhysical chemistry chemical physics : PCCP
researchProduct

Photoluminescence study of excitons in homoepitaxial GaN

2001

High-resolution photoluminescence spectra have been measured in high-quality homoepitaxial GaN grown on a free-standing GaN substrate with lower residual strain than in previous work. Unusually strong and well-resolved excitonic lines were observed. Based on free- and bound exciton transitions some important GaN parameters are derived. The Arrhenius plot of the free A exciton recombination yields a binding energy of 24.7 meV. Based on this datum, an accurate value for the band-gap energy, EG(4.3 K) = 3.506 eV, can be given. From the donor bound excitons and their “two-electron” satellites, the exciton localization energy and donor ionization energy are deduced. Finally, estimates of the ele…

Materials sciencePhotoluminescenceIII-V semiconductorsCondensed Matter::OtherExcitonBinding energyGallium compoundsSemiconductor epitaxial layersUNESCO::FÍSICAGeneral Physics and AstronomyElectronGallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Semiconductor epitaxial layers ; Photoluminescence ; Excitons ; Effective massWide band gap semiconductorsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectArrhenius plotCondensed Matter::Materials ScienceEffective mass (solid-state physics):FÍSICA [UNESCO]Effective massExcitonsAtomic physicsIonization energyPhotoluminescenceBiexciton
researchProduct

Luminescence of natural α-quartz crystal with aluminum, alkali and noble ions impurities

2019

This work was supported by the Latvian Science Council Grant No lzp-2018/1–0289 .

Materials sciencePhotoluminescenceOptically stimulated luminescenceTime resolved photoluminescenceBiophysicsAnalytical chemistrychemistry.chemical_element010502 geochemistry & geophysicsThermal quenching01 natural sciencesBiochemistryIonα-quartz0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Spontaneous emissionAluminum-one-valence ions complex0105 earth and related environmental sciences010302 applied physicsCondensed Matter - Materials ScienceGeneral ChemistryCondensed Matter PhysicsAlkali metalCopperAtomic and Molecular Physics and OpticschemistryAtomic electron transitionLuminescenceExcimer lasers
researchProduct

Luminescence of localized states in oxidized and fluorinated silica glass

2019

This work was supported by the Latvian Science Council Grant No lzp-2018/1-0289.

Materials sciencePhotoluminescenceRecombination luminescenceTime resolved photoluminescencePhysics::OpticsFOS: Physical sciences02 engineering and technologyLocalized statesPhotochemistryExcimer01 natural sciencesCondensed Matter::Disordered Systems and Neural Networkslaw.inventionlaw0103 physical sciencesMaterials Chemistry:NATURAL SCIENCES:Physics [Research Subject Categories]Pure silica glass010302 applied physicsCondensed Matter - Materials ScienceSelf-trapped holeMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserElectronic Optical and Magnetic MaterialsAtomic electron transitionAttenuation coefficientCeramics and CompositesCharge carrier0210 nano-technologyLuminescenceExcitationOxygen deficient centersExcimer lasers
researchProduct