Search results for " Photoluminescence"
showing 10 items of 77 documents
Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution
2016
We used online UV-VIS optical absorption and photoluminescence spectra, acquired during and after pulsed laser ablation of a Zinc plate in aqueous solution, to investigate the effect of the laser repetition rate and liquid environment on the oxidation processes of the produced nanoparticles. A transient Zn/ZnO core-shell structure was revealed by the coexistence of an absorption peak around 5.0 eV due to Zn surface plasmon resonance and of an edge at 3.4 eV coming from wurtzite ZnO. The growth kinetics of ZnO at the various repetition rates, selectively probed by the excitonic emission at 3.3 eV, began immediately at the onset of laser ablation and was largely independent of the repetition …
Recombination processes in unintentionally doped GaTe single crystals
2002
Emission spectra of GaTe single crystals in the range of 1.90–1.38 eV have been analyzed at different temperatures and excitation intensities by photoluminescence, photoluminescence excitation, and selective photoluminescence. A decrease in band gap energy with an increase in temperature was obtained from the redshift of the free exciton recombination peak. The energy of longitudinal optical phonons was found to be 14±1 meV. A value of 1.796±0.001 eV for the band gap at 10 K was determined, and the bound exciton energy was found to be 18±0.3 meV. The activation energy of the thermal quenching of the main recombination peaks and of the ones relating to the ionization energy of impurities and…
Luminescence Efficiency of Si/SiO 2 Nanoparticles Produced by Laser Ablation
2019
Photoluminescence properties of Si(core)/SiO 2 (shell) nanoparticles produced by pulsed laser ablation in aqueous solution are investigated with the purpose to highlight the microscopic processes that govern the emission brightness and stability. Time resolved spectra evidence that these systems emit a µs decaying band centered around 1.95 eV, that is associated with the radiative recombination of quantum-confined excitons generated in the Si nanocrystalline core. Both the quantum efficiency and the stability of this emission are strongly dependent on the pH level of the solution, that is changed after the laser ablation is performed. They enhance in acid environment because of the H + pass…
The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films
2009
Photoluminescence (PL) and time-resolved PL experiments as a function of the elaboration process are performed on Er-doped silicon-rich silicon oxide (SRO:Er) thin films grown under NH(3) atmosphere. These PL measurements of the Er(3+) emission at 1.54 microm under non-resonant pumping with the Er f-f transitions are obtained for different Er(3+) concentrations, ranging from 0.05 to 1.4 at.%, and various post-growth annealing temperatures of the layers. High resolution transmission electron microscopy (HRTEM) and energy-filtered TEM (EFTEM) analysis show a high density of Si nanostructures composed of amorphous and crystalline nanoclusters varying from 2.7 x 10(18) to 10(18) cm(-3) as a fun…
Optical characterization of Mg-doped GaN films grown by metalorganic chemical vapor phase deposition
2000
Scanning electron microscopy, micro-Raman, and photoluminescence (PL) measurements are reported for Mg-doped GaN films grown on (0001) sapphire substrates by low-pressure metalorganic chemical vapor phase deposition. The surface morphology, structural, and optical properties of GaN samples with Mg concentrations ranging from 1019 to 1021 cm−3 have been studied. In the scanning micrographs large triangular pyramids are observed, probably due to stacking fault formation and three-dimensional growth. The density and size of these structures increase with the amount of magnesium incorporated in the samples. In the photoluminescence spectra, intense lines were found at 3.36 and 3.31 eV on the tr…
Modulation of the electronic properties of GaN films by surface acoustic waves
2003
We report on the interaction between photogenerated electron-hole pairs and surface acoustic waves (SAW) in GaN films grown on sapphire substrates. The spatial separation of photogenerated carriers by the piezoelectric field of the SAW is evidenced by the quenching of the photoluminescence (PL) intensity. The quenching levels in GaN are significantly smaller than those measured in GaAs under similar conditions. The latter is attributed to the lower exciton ionization efficiency and carrier separation probabilities mediated by the piezoelectric effect. The PL spectra also evidence energy shifts and broadenings of the electronic transitions, which are attributed to the band gap modulation by …
Temperature dependence of O2 singlet photoluminescence in silica nanoparticles
2013
Abstract The near infrared singlet emission and photoluminescence lifetime of O 2 molecules embedded in silica nanoparticles are studied from room temperature down to 10 K. The area of the photoluminescence band under infrared excitation decreases for temperature above 100 K and the lifetime is shortened. These observations provide evidence of a thermally activated relaxation channel with activation energy of about 40 meV. This relaxation mechanism adds to the already known temperature independent electronic-to-vibrational coupling involving high energy vibrational modes of the host matrix or its impurities. The thermally activated process is suggested to consist in the breakage of the O 2 …
Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy
2015
Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. T…
Optical characterization of individual GaAs quantum dots grown with height control technique
2013
We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar morphology. Besides the height controlled quantum dots, we observe nanodisks formation. Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling between quantum dots and nanodisks and demonstrate the high optical properties of the individual quantum dots, despite the processing steps needed for height control. © 2013 AIP Publishing LLC.
Raman spectroscopy and photoluminescence of ZnTe thin films grown on GaAs
2002
5 páginas, 4 figuras, 1 tabla.