Search results for " Printing"

showing 10 items of 162 documents

Raman imaging and spectroscopy of heterogeneous individual carbon nanotubes

2003

Isolated single-walled carbon nanotubes (CNTs) were grown by chemical vapor deposition methods on Fe/Mo/Al2O3 catalysts, which were patterned by microcontact printing. The pattern allowed us to trace back and investigate the same isolated CNT by atomic-force (AFM) and confocal Raman microscopy with different excitation wavelengths. A change of the Raman intensity could be correlated with structural defects revealing that the molecular structure of the tubes is changing along the tube axis. By investigating the same tube segments with different excitation energies, we found that the D-line of isolated tubes shows a strong dispersive effect of 45−50 cm-1/eV. In contrast, the spectral position…

Materials scienceAnalytical chemistryCarbon nanotubeChemical vapor depositionSurfaces Coatings and Filmslaw.inventionsymbols.namesakelawMicrocontact printingMicroscopyMaterials ChemistrysymbolsMoleculePhysical and Theoretical ChemistryRaman spectroscopySpectroscopyExcitation
researchProduct

Imbibition of Femtoliter-Scale DNA-Rich Aqueous Droplets into Porous Nylon Substrates by Molecular Printing

2019

This work presents the first reported imbibition mechanism of femtoliter (fL)-scale droplets produced by microchannel cantilever spotting (μCS) of DNA molecular inks into porous substrates (hydrophilic nylon). Differently from macroscopic or picoliter droplets, the downscaling to the fL-size leads to an imbibition process controlled by the subtle interplay of evaporation, spreading, viscosity, and capillarity, with gravitational forces being quasi-negligible. In particular, the minimization of droplet evaporation, surface tension, and viscosity allows for a reproducible droplet imbibition process. The dwell time on the nylon surface permits further tuning of the droplet lateral size, in acc…

Materials scienceDiffusionSettore CHIM/05 - Scienza e Tecnologia dei Materiali PolimericiEvaporation02 engineering and technology010402 general chemistry01 natural sciencesSurface tensionMolecular ImprintingViscosityElectrochemistrySurface TensionGeneral Materials Sciencedroplets imbibition molecular printing nylon substrates biosensors microarraysPorositySpectroscopyMicrochannelFemtoliterNucleic Acid HybridizationWaterSurfaces and InterfacesDNA021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesNylonsChemical engineeringSettore CHIM/03 - Chimica Generale E InorganicaImbibition0210 nano-technologyHydrophobic and Hydrophilic InteractionsPorosity
researchProduct

Oil-in-Water fL Droplets by Interfacial Spontaneous Fragmentation and Their Electrical Characterization

2019

Inkjet printing is here employed for the first time as a method to produce femtoliter-scale oil droplets dispersed in water. In particular, picoliter-scale fluorinated oil (FC40) droplets are printed in the presence of perfluoro-1-octanol surfactant at a velocity higher than 5 m/s. Femtoliter-scale oil droplets in water are spontaneously formed through a fragmentation process at the water/air interface using minute amounts of nonionic surfactant (down to 0.003% v/v of Tween 80). This fragmentation occurs by a Plateau-Rayleigh mechanism at a moderately high Weber number (10(1)). A microfluidic chip with integrated microelectrodes allows droplets characterization in terms of number and diamet…

Materials scienceFabricationSettore ING-IND/34Femtoliter02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsInkjet printing Plateau–Rayleigh instability electrical impedance lab-on-chip01 natural sciences0104 chemical sciencesMicroelectrodeChemical engineeringFragmentation (mass spectrometry)Pulmonary surfactantOil dropletEmulsionElectrochemistryWeber numberGeneral Materials Science0210 nano-technologySpectroscopy
researchProduct

Printing ZnO Inks: From Principles to Devices

2020

Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations an…

Materials scienceFabricationthin filmGeneral Chemical Engineeringprinted electronicContext (language use)Nanotechnology02 engineering and technology010402 general chemistrysensors01 natural sciencescrystalInorganic Chemistrysensornanocompositescrystalslcsh:QD901-999General Materials ScienceThin filmink transportinkjet printingNanocompositeSettore FIS/03InkwellWide-bandgap semiconductor021001 nanoscience & nanotechnologyCondensed Matter Physicsnanorod0104 chemical sciencesthin filmsPrinted electronicsZnONanorodprinted electronicslcsh:Crystallography0210 nano-technologynanorods
researchProduct

DNA-based biosensor on flexible nylon substrate by dip-pen lithography for topoisomerase detection

2019

Dip-pen lithography (DPL) technique has been employed to develop a new flexible biosensor realized on nylon with the aim to detect the activity of human topoisomerase. The sensor is constituted by an ordered array of a DNA substrate on flexible nylon supports that can be exploited as a drug screening platform for anticancer molecules. Here, we demonstrate a rapid protocol that permits to immobilize minute quantities of DNA oligonucleotides by DPL on nylon surfaces. Theoretical and experimental aspects have been investigated to successfully print DNA oligonucleotides by DPL on such a porous and irregular substrate.

Materials scienceFlexible deviceNanotechnologymacromolecular substances02 engineering and technologySubstrate (printing)01 natural sciencesIndustrial and Manufacturing Engineeringchemistry.chemical_compoundA-DNALithographyTopoisomerasebiologyOligonucleotideTopoisomerase010401 analytical chemistrytechnology industry and agriculture021001 nanoscience & nanotechnology0104 chemical sciencesSettore BIO/18 - GeneticachemistryMolecular printingbiology.protein0210 nano-technologyBiosensorDNABiosensor
researchProduct

Synthesis of a New Copper-Azobenzene Dicarboxylate Framework in the Form of Hierarchical Bulk Solids and Thin Films without and with Patterning

2011

Reaction of copper(II) acetate with azobenzene-4,4′-dicarboxylic acid results in the formation of a metal–organic framework with the unexpected stoichiometry of Cu(II):ligand of 2:1. The bulk synthesis results in microspheres assembled from either nanobricks or nanoflakes, depending on the ratio of the reactants in solution. While the former behaves like a bulk solid with clear reflections in the X-ray and electron diffraction experiments, the latter obviously is dominated by surface effects, with a significant fraction of slightly expanded elemental cells and a significantly increased outer surface area. The material could also be deposited on a variety of surfaces using a stepwise layer-b…

Materials scienceGeneral Chemical EngineeringLayer by layerchemistry.chemical_elementNanotechnologyGeneral ChemistryCopperchemistry.chemical_compoundAzobenzenechemistryChemical engineeringElectron diffractionMicrocontact printingMaterials ChemistryCrystalliteThin filmStoichiometryChemistry of Materials
researchProduct

Three-Dimensional Printing of Nonlinear Optical Lenses.

2018

In the current paper, a series of nonlinear optical (NLO) active devices was prepared by utilizing stereolithographic three-dimensional printing technique. Microcrystalline NLO active component, urea, or potassium dihydrogen phosphate was dispersed in a simple photopolymerizable polyacrylate-based resin and used as the printing material to fabricate highly efficient transparent NLO lenses. The nonlinear activity of the printed lenses was confirmed by second-harmonic generation measurements using a femtosecond laser-pumped optical parametric amplifier operating at a wavelength of 1195 nm. The three-dimensional printing provides a simple method to utilize a range of NLO active compounds witho…

Materials scienceGeneral Chemical Engineeringlinssit (optiikka)Crystal growth010402 general chemistry01 natural sciencesnonlinear optical lensesArticlelcsh:ChemistryNonlinear optical3D-tulostusthree-dimensional printingta216ta116ta114010405 organic chemistrybusiness.industryGeneral ChemistryOptical parametric amplifier0104 chemical sciencesWavelengthNonlinear systemMicrocrystallinelcsh:QD1-999Three dimensional printingFemtosecondOptoelectronicsbusinessACS omega
researchProduct

"Smart" defects in colloidal photonic crystals

2005

AbstractWe present a bottom-up approach for the construction of "Smart" active defects in colloidal photonic crystals (CPCs). These structures incorporate polyelectrolyte multilayer (PEM) planar defects embedded in silica CPCs through a combination of evaporation induced self-assembly and microcontact transfer printing. We show how the enormous chemical diversity inherent to PEMs can be harnessed to create chemically active defect structures responsive to solvent vapor pressures, light, temperature as well as redox cycling. A sharp transmission state within the photonic stopband, induced by the PEM defect, can be precisely, reproducibly and in some cases reversibly tuned by these external s…

Materials sciencePlanarTransfer printingbusiness.industryNanotechnologySelf-assemblyStopbandPhotonicsbusinessEvaporation (deposition)Tunable laserPolyelectrolyte
researchProduct

Biosilica electrically-insulating layers by soft lithography-assisted biomineralisation with recombinant silicatein.

2011

Materials scienceSurface PropertiesMechanical EngineeringNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCathepsinsSoft lithographyRecombinant Proteins0104 chemical sciences3. Good healthlaw.inventionImmobilized ProteinsMicroscopy FluorescenceMechanics of MaterialslawMicrocontact printingRecombinant DNAGeneral Materials Science0210 nano-technologyAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Effects of Different Test Setups on the Experimental Tensile Behaviour of Basalt Fibre Bidirectional Grids for FRCM Composites

2020

Fibre-reinforced cementitious matrix (FRCM) composites have been effectively used during the last ten years for the strengthening of existing concrete and masonry structures. These composite materials are made of medium- and high-strength fibre meshes embedded in inorganic matrices. Synthetic fibres are the ones that are currently the most used

Materials scienceTRMDigital image correlation (DIC)0211 other engineering and technologies02 engineering and technologySTRIPSFRCMcompositeslaw.inventionBiomaterialslcsh:TP890-933lawlcsh:TP200-248021105 building & constructionUltimate tensile strengthTensile characterisationComposite materiallcsh:QH301-705.5Civil and Structural Engineeringbusiness.industrySystem of measurementbasalt gridlcsh:Chemicals: Manufacture use etc.Masonry021001 nanoscience & nanotechnologyGridlcsh:QC1-999ClampingSettore ICAR/09 - Tecnica Delle CostruzioniSynthetic fiberlcsh:Biology (General)Mechanics of MaterialsCeramics and Compositeslcsh:Textile bleaching dyeing printing etc.Slippage0210 nano-technologybusinesslcsh:PhysicsBasalt grid
researchProduct