Search results for " Programming"

showing 10 items of 1616 documents

On linear extension operators from growths of compactifications of products

1996

Abstract We obtain some results on product spaces. Among them we prove that for noncompact spaces X 1 and X 2 , the norm of every linear extension operator from C ( β ( X 1 × X 2 ) β ( X 1 × X 2 )) into C ( β ( X 1 × X 2 )) is greater or equal than 2, and also that β ( X 1 × X 2 ) β ( X 1 × X 2 ) is not a neighborhood retract of β ( X 1 × X 2 ).

Discrete mathematicsPseudocompact spacePseudocompact spaceCrystallographyOperator (computer programming)Linear extensionProduct (mathematics)RetractStone-Čech compactificationStone–Čech compactificationLinear extension operatorProduct topologyGeometry and TopologyProduct spaceMathematicsTopology and its Applications
researchProduct

Fixed point theorems for non-self mappings in symmetric spaces under φ-weak contractive conditions and an application to functional equations in dyna…

2014

In this paper, we prove some common fixed point theorems for two pairs of non-self weakly compatible mappings enjoying common limit range property, besides satisfying a generalized phi-weak contractive condition in symmetric spaces. We furnish some illustrative examples to highlight the realized improvements in our results over the corresponding relevant results of the existing literature. We extend our main result to four finite families of mappings in symmetric spaces using the notion of pairwise commuting mappings. Finally, we utilize our results to discuss the existence and uniqueness of solutions of certain system of functional equations arising in dynamic programming.

Discrete mathematicsPure mathematicsApplied Mathematics010102 general mathematicsFixed-point theoremcommon fixed pointweakly compatible mappingSymmetric space01 natural sciences010101 applied mathematicsDynamic programmingComputational MathematicsRange (mathematics)Settore MAT/05 - Analisi MatematicaSymmetric spacePairwise comparisonLimit (mathematics)Uniqueness0101 mathematicscommon limit range propertyCoincidence pointMathematicsApplied Mathematics and Computation
researchProduct

Non-self-adjoint resolutions of the identity and associated operators

2013

Closed operators in Hilbert space defined by a non-self-adjoint resolution of the identity $$\{X(\lambda )\}_{\lambda \in {\mathbb R}}$$ , whose adjoints constitute also a resolution of the identity, are studied. In particular, it is shown that a closed operator $$B$$ has a spectral representation analogous to the familiar one for self-adjoint operators if and only if $$B=\textit{TAT}^{-1}$$ where $$A$$ is self-adjoint and $$T$$ is a bounded inverse.

Discrete mathematicsPure mathematicsApplied MathematicsHilbert spaceInverseOperator theoryMathematics::Spectral TheoryNon-self-adjoint resolution of identityFunctional Analysis (math.FA)Mathematics - Functional AnalysisComputational Mathematicssymbols.namesakeIdentity (mathematics)Operator (computer programming)Computational Theory and MathematicsSettore MAT/05 - Analisi MatematicaBounded functionsymbolsFOS: MathematicsSimilarity of operatorsSelf-adjoint operatorMathematicsResolution (algebra)
researchProduct

Lipschitz operator ideals and the approximation property

2016

[EN] We establish the basics of the theory of Lipschitz operator ideals with the aim of recovering several classes of Lipschitz maps related to absolute summability that have been introduced in the literature in the last years. As an application we extend the notion and main results on the approximation property for Banach spaces to the case of metric spaces. (C) 2015 Elsevier Inc. All rights reserved.

Discrete mathematicsPure mathematicsApproximation propertyLipschitz mappingApplied Mathematics010102 general mathematicsBanach space010103 numerical & computational mathematicsLipschitz operator idealLipschitz continuity01 natural sciencesMetric spaceOperator (computer programming)Lipschitz domainLipschitz absolutely summing operatorsMetric mapApproximation property0101 mathematicsMATEMATICA APLICADAAnalysisMathematics
researchProduct

Singular Perturbations and Operators in Rigged Hilbert Spaces

2015

A notion of regularity and singularity for a special class of operators acting in a rigged Hilbert space \({\mathcal{D} \subset \mathcal{H}\subset \mathcal{D}^\times}\) is proposed and it is shown that each operator decomposes into a sum of a regular and a singular part. This property is strictly related to the corresponding notion for sesquilinear forms. A particular attention is devoted to those operators that are neither regular nor singular, pointing out that a part of them can be seen as perturbation of a self-adjoint operator on \({\mathcal{H}}\). Some properties for such operators are derived and some examples are discussed.

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsHilbert spacePerturbation (astronomy)Rigged Hilbert spaceOperator theorySpecial class01 natural sciencesregular operator010101 applied mathematicssymbols.namesakeOperator (computer programming)Singularityrigged Hilbert spaceSettore MAT/05 - Analisi Matematicasymbolssingular operator0101 mathematicsMathematics
researchProduct

Farkas-Minkowski systems in semi-infinite programming

1981

The Farkas-Minkowski systems are characterized through a convex cone associated to the system, and some sufficient conditions are given that guarantee the mentioned property. The role of such systems in semi-infinite programming is studied in the linear case by means of the duality, and, in the nonlinear case, in connection with optimality conditions. In the last case the property appears as a constraint qualification.

Discrete mathematicsPure mathematicsNonlinear systemControl and OptimizationApplied MathematicsMinkowski spaceSecond-order cone programmingDuality (optimization)Constraint satisfactionSemi-infinite programmingMathematicsApplied Mathematics & Optimization
researchProduct

Incomparable Banach spaces and operator semigroups

2002

Using the notions of total incomparability and total coincomparability of Banach spaces, we define two families of operator semigroups. We show that these semigroups are minimal, in the sense that they admit a perturbative characterization. Moreover, they allow us to characterize the corresponding incomparability classes.

Discrete mathematicsPure mathematicsOperator (computer programming)Approximation propertyGeneral MathematicsBanach spaceSpecial classes of semigroupsBanach manifoldFinite-rank operatorCharacterization (mathematics)C0-semigroupMathematicsArchiv der Mathematik
researchProduct

Spectral invariance, ellipticity, and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces

1992

The pseudodifferential operators with symbols in the Grushin classes \~S inf0 supρ,δ , 0 ≤ δ < ρ ≤ 1, of slowly varying symbols are shown to form spectrally invariant unital Frecher-*-algebras (Ψ*-algebras) in L(L 2(R n )) and in L(H γ st ) for weighted Sobolev spaces H infγ sup defined via a weight d function γ. In all cases, the Fredholm property of an operator can be characterized by uniform ellipticity of the symbol. This gives a converse to theorems of Grushin and Kumano-Ta-Taniguchi. Both, the spectrum and the Fredholm spectrum of an operator turn out to be independent of the choices of s, t and γ. The characterization of the Fredholm property by uniform ellipticity leads to an index …

Discrete mathematicsPure mathematicsParametrixFredholm integral equationCompact operatorFredholm theorySobolev spacesymbols.namesakeOperator (computer programming)Differential geometryMathematics::K-Theory and HomologysymbolsGeometry and TopologyAtiyah–Singer index theoremAnalysisMathematicsAnnals of Global Analysis and Geometry
researchProduct

Operators in Rigged Hilbert spaces: some spectral properties

2014

A notion of resolvent set for an operator acting in a rigged Hilbert space $\D \subset \H\subset \D^\times$ is proposed. This set depends on a family of intermediate locally convex spaces living between $\D$ and $\D^\times$, called interspaces. Some properties of the resolvent set and of the corresponding multivalued resolvent function are derived and some examples are discussed.

Discrete mathematicsPure mathematicsResolvent set47L60 47L05Applied MathematicsRigged Hilbert spaces; Operators; Spectral theoryHilbert spaceFunction (mathematics)Resolvent formalismRigged Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional Analysissymbols.namesakeOperator (computer programming)Rigged Hilbert spaceSettore MAT/05 - Analisi MatematicaLocally convex topological vector spacesymbolsFOS: MathematicsOperatorSpectral theoryAnalysisResolventMathematics
researchProduct

An Exact Algorithm for the Quadratic Assignment Problem on a Tree

1989

The Tree QAP is a special case of the Quadratic Assignment Problem (QAP) where the nonzero flows form a tree. No condition is required for the distance matrix. This problem is NP-complete and is also a generalization of the Traveling Salesman Problem. In this paper, we present a branch-and-bound algorithm for the exact solution of the Tree QAP based on an integer programming formulation of the problem. The bounds are computed using a Lagrangian relaxation of this formulation. To solve the relaxed problem, we present a Dynamic Programming algorithm which is polynomially bounded. The obtained lower bound is very sharp and equals the optimum in many cases. This fact allows us to employ a redu…

Discrete mathematicsQuadratic assignment problemManagement Science and Operations ResearchTravelling salesman problemComputer Science ApplicationsReduction (complexity)Tree (data structure)symbols.namesakeExact algorithmLagrangian relaxationsymbolsInteger programmingGeneralized assignment problemMathematicsOperations Research
researchProduct