6533b825fe1ef96bd1281cdf
RESEARCH PRODUCT
Spectral invariance, ellipticity, and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces
Elmar Schrohesubject
Discrete mathematicsPure mathematicsParametrixFredholm integral equationCompact operatorFredholm theorySobolev spacesymbols.namesakeOperator (computer programming)Differential geometryMathematics::K-Theory and HomologysymbolsGeometry and TopologyAtiyah–Singer index theoremAnalysisMathematicsdescription
The pseudodifferential operators with symbols in the Grushin classes \~S inf0 supρ,δ , 0 ≤ δ < ρ ≤ 1, of slowly varying symbols are shown to form spectrally invariant unital Frecher-*-algebras (Ψ*-algebras) in L(L 2(R n )) and in L(H γ st ) for weighted Sobolev spaces H infγ sup defined via a weight d function γ. In all cases, the Fredholm property of an operator can be characterized by uniform ellipticity of the symbol. This gives a converse to theorems of Grushin and Kumano-Ta-Taniguchi. Both, the spectrum and the Fredholm spectrum of an operator turn out to be independent of the choices of s, t and γ. The characterization of the Fredholm property by uniform ellipticity leads to an index theorem for the Fredholm operators in these classes, extending results of Fedosov and Hormander.
year | journal | country | edition | language |
---|---|---|---|---|
1992-01-01 | Annals of Global Analysis and Geometry |