Search results for " Regular"

showing 10 items of 197 documents

Tensor bounds on the hidden universe

2018

During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop correction…

High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)ddc:500.201 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityTensorPlanck010306 general physicsmedia_commonPhysicsInflation (cosmology)Slow roll010308 nuclear & particles physicsScalar (physics)InflatonCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbolslcsh:QC770-798Renormalization Regularization and RenormalonsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Transcendental numbers and the topology of three-loop bubbles

1999

We present a proof that all transcendental numbers that are needed for the calculation of the master integrals for three-loop vacuum Feynman diagrams can be obtained by calculating diagrams with an even simpler topology, the topology of spectacles.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsComputationBare massFOS: Physical sciencesMathematical Physics (math-ph)TopologyHigh Energy Physics - PhenomenologyDimensional regularizationsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Number theoryHigh Energy Physics - Theory (hep-th)Special functionsRegularization (physics)symbolsFeynman diagramAlgebraic numberMathematical PhysicsPhysical Review D
researchProduct

Gluon mass generation without seagull divergences

2009

Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for t…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Mass generationHigh Energy Physics::PhenomenologyNuclear TheoryFOS: Physical sciencesPropagatorFísicaIntegral equationEffective nuclear chargeGluonHigh Energy Physics - PhenomenologyDimensional regularizationTheoretical physicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum electrodynamicsRegularization (physics)Nuclear ExperimentAnsatz
researchProduct

Gluon mass generation in the PT-BFM scheme

2006

In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search …

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsParticle physicsBackground field methodLorentz transformationHigh Energy Physics::LatticeMass generationHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyPropagatorFOS: Physical sciencesFísicaRenormalization groupIntegral equationMassless particleHigh Energy Physics - Phenomenologysymbols.namesakeTheoretical physicsDimensional regularizationHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)symbols
researchProduct

Threshold expansion of the sunset diagram

1999

By use of the threshold expansion we develop an algorithm for analytical evaluation, within dimensional regularization, of arbitrary terms in the expansion of the (two-loop) sunset diagram with general masses m_1, m_2 and m_3 near its threshold, i.e. in any given order in the difference between the external momentum squared and its threshold value, (m_1+m_2+m_3)^2. In particular, this algorithm includes an explicit recurrence procedure to analytically calculate sunset diagrams with arbitrary integer powers of propagators at the threshold.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsParticle physicsDiagramMathematical analysisFOS: Physical sciencesPropagatorSunsetMomentumHigh Energy Physics - PhenomenologyDimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)IntegerOrder (group theory)Nuclear Physics B
researchProduct

Polarized triple-collinear splitting functions at NLO for processes with photons

2014

We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling $\alpha_{\rm S}$, for the splitting processes $\gamma \to q \bar{q} \gamma$, $\gamma \to q \bar{q} g$ and $g \to q \bar{q} \gamma$. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).

High Energy Physics - TheoryPhysicsParticle physicsNuclear and High Energy PhysicsPhotonBar (music)High Energy Physics::PhenomenologyStructure (category theory)FísicaOrder (ring theory)FOS: Physical sciencesContext (language use)Function (mathematics)High Energy Physics - PhenomenologyDimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)High Energy Physics::ExperimentLimit (mathematics)Mathematical physics
researchProduct

Dimensional interpolation and the Selberg integral

2019

Abstract We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non–integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.

High Energy Physics - TheoryPure mathematicsGeneral Physics and AstronomyFOS: Physical sciencesAlgebraic geometry01 natural sciencesWedge (geometry)Dimensional regularizationsymbols.namesakeMathematics - Algebraic GeometryMathematics::Algebraic GeometryGrassmannianEuler characteristic0103 physical sciencesFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematics010102 general mathematicsHigh Energy Physics - Theory (hep-th)symbols010307 mathematical physicsGeometry and TopologyMirror symmetryBessel functionInterpolation
researchProduct

A quasi-finite basis for multi-loop Feynman integrals

2014

We present a new method for the decomposition of multi-loop Euclidean Feynman integrals into quasi-finite Feynman integrals. These are defined in shifted dimensions with higher powers of the propagators, make explicit both infrared and ultraviolet divergences, and allow for an immediate and trivial expansion in the parameter of dimensional regularization. Our approach avoids the introduction of spurious structures and thereby leaves integrals particularly accessible to direct analytical integration techniques. Alternatively, the resulting convergent Feynman parameter integrals may be evaluated numerically. Our approach is guided by previous work by the second author but overcomes practical …

High Energy Physics - TheoryQuantum chromodynamicsPhysicsNuclear and High Energy PhysicsBasis (linear algebra)FOS: Physical sciencesPropagatorHigh Energy Physics - Phenomenologysymbols.namesakeDimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Euclidean geometrysymbolsApplied mathematicsFeynman diagramIntegration by partsReduction (mathematics)Journal of High Energy Physics
researchProduct

Regularity and h-polynomials of toric ideals of graphs

2020

For all integers 4 ≤ r ≤ d 4 \leq r \leq d , we show that there exists a finite simple graph G = G r , d G= G_{r,d} with toric ideal I G ⊂ R I_G \subset R such that R / I G R/I_G has (Castelnuovo–Mumford) regularity r r and h h -polynomial of degree d d . To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O’Keefe that compares the depth and dimension of toric ideals of graphs.

Hilbert seriesBetti numberGeneral MathematicsDimension (graph theory)0102 computer and information sciencesCommutative Algebra (math.AC)01 natural sciencesRegularityCombinatoricssymbols.namesakeMathematics - Algebraic GeometryCorollaryMathematics::Algebraic GeometryGraded Betti numbers; Graphs; Hilbert series; Regularity; Toric idealsFOS: MathematicsIdeal (ring theory)13D02 13P10 13D40 14M25 05E400101 mathematicsAlgebraic Geometry (math.AG)QuotientHilbert–Poincaré seriesMathematicsSimple graphDegree (graph theory)Mathematics::Commutative AlgebraApplied Mathematics010102 general mathematicsMathematics - Commutative AlgebraSettore MAT/02 - AlgebraToric ideals010201 computation theory & mathematicsGraded Betti numbers Graphs Hilbert series Regularity Toric idealssymbolsSettore MAT/03 - GeometriaGraded Betti numbersGraphs
researchProduct

Line Shape Measurement and Modelling for Plasma Diagnostics

2014

In this paper we discuss different methods of narrow spectral line shape measurements for a wide spectral range by means of high-resolution spectrometers such as the Fabry-Perot spectrometer, Zeeman spectrometer and Fourier transform spectrometer as well as a theoretical model for spectral line shape modelling and solving of the inverse task based on Tikhonov's regularization method. Special attention is devoted to the line shape measurements for the optically thin light sources filled with Hg, Ar, Xe, Kr for their use in high precision analysers for detection of heavy metals and benzene.

HistoryZeeman effectSpectrometerPhysics::Instrumentation and Detectorsbusiness.industryChemistryInverseRegularization (mathematics)Computer Science ApplicationsEducationSpectral line shapeTikhonov regularizationsymbols.namesakeOpticssymbolsPlasma diagnosticsNuclear ExperimentbusinessLine (formation)Journal of Physics: Conference Series
researchProduct