Search results for " Regular"
showing 10 items of 197 documents
Tensor bounds on the hidden universe
2018
During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop correction…
Transcendental numbers and the topology of three-loop bubbles
1999
We present a proof that all transcendental numbers that are needed for the calculation of the master integrals for three-loop vacuum Feynman diagrams can be obtained by calculating diagrams with an even simpler topology, the topology of spectacles.
Gluon mass generation without seagull divergences
2009
Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for t…
Gluon mass generation in the PT-BFM scheme
2006
In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search …
Threshold expansion of the sunset diagram
1999
By use of the threshold expansion we develop an algorithm for analytical evaluation, within dimensional regularization, of arbitrary terms in the expansion of the (two-loop) sunset diagram with general masses m_1, m_2 and m_3 near its threshold, i.e. in any given order in the difference between the external momentum squared and its threshold value, (m_1+m_2+m_3)^2. In particular, this algorithm includes an explicit recurrence procedure to analytically calculate sunset diagrams with arbitrary integer powers of propagators at the threshold.
Polarized triple-collinear splitting functions at NLO for processes with photons
2014
We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling $\alpha_{\rm S}$, for the splitting processes $\gamma \to q \bar{q} \gamma$, $\gamma \to q \bar{q} g$ and $g \to q \bar{q} \gamma$. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).
Dimensional interpolation and the Selberg integral
2019
Abstract We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non–integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.
A quasi-finite basis for multi-loop Feynman integrals
2014
We present a new method for the decomposition of multi-loop Euclidean Feynman integrals into quasi-finite Feynman integrals. These are defined in shifted dimensions with higher powers of the propagators, make explicit both infrared and ultraviolet divergences, and allow for an immediate and trivial expansion in the parameter of dimensional regularization. Our approach avoids the introduction of spurious structures and thereby leaves integrals particularly accessible to direct analytical integration techniques. Alternatively, the resulting convergent Feynman parameter integrals may be evaluated numerically. Our approach is guided by previous work by the second author but overcomes practical …
Regularity and h-polynomials of toric ideals of graphs
2020
For all integers 4 ≤ r ≤ d 4 \leq r \leq d , we show that there exists a finite simple graph G = G r , d G= G_{r,d} with toric ideal I G ⊂ R I_G \subset R such that R / I G R/I_G has (Castelnuovo–Mumford) regularity r r and h h -polynomial of degree d d . To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O’Keefe that compares the depth and dimension of toric ideals of graphs.
Line Shape Measurement and Modelling for Plasma Diagnostics
2014
In this paper we discuss different methods of narrow spectral line shape measurements for a wide spectral range by means of high-resolution spectrometers such as the Fabry-Perot spectrometer, Zeeman spectrometer and Fourier transform spectrometer as well as a theoretical model for spectral line shape modelling and solving of the inverse task based on Tikhonov's regularization method. Special attention is devoted to the line shape measurements for the optically thin light sources filled with Hg, Ar, Xe, Kr for their use in high precision analysers for detection of heavy metals and benzene.