Search results for " Regulation"

showing 10 items of 3187 documents

Molecular signatures of silencing suppression degeneracy from a complex RNA virus

2021

As genomic architectures become more complex, they begin to accumulate degenerate and redundant elements. However, analyses of the molecular mechanisms underlying these genetic architecture features remain scarce, especially in compact but sufficiently complex genomes. In the present study, we followed a proteomic approach together with a computational network analysis to reveal molecular signatures of protein function degeneracy from a plant virus (as virus-host protein-protein interactions). We employed affinity purification coupled to mass spectrometry to detect several host factors interacting with two proteins of Citrus tristeza virus (p20 and p25) that are known to function as RNA sil…

0106 biological sciences0301 basic medicineProteomicsCitrusInteraction NetworksPathogenesisPlant Sciencemedicine.disease_causePathology and Laboratory Medicine01 natural sciencesInteractomeBiochemistryBimolecular fluorescence complementationRNA interferenceRNA silencing supressorsCitrus tristeza virusMedicine and Health SciencesDegeneracy (biology)Protein Interaction MapsBiology (General)H20 Plant diseasesPlant ProteinsEcologybiologyPlant virusesEukaryotaArgonautePlantsSmall interfering RNANucleic acidsRNA silencingComputational Theory and MathematicsGenetic interferenceExperimental Organism SystemsModeling and SimulationProteomeArgonaute ProteinsHost-Pathogen InteractionsRNA ViralEpigeneticsResearch ArticleClosterovirusRNA virusViral proteinQH301-705.5Arabidopsis ThalianaPlant PathogensComputational biologyGenome ViralBrassicaResearch and Analysis MethodsModels BiologicalPlant Viral Pathogens03 medical and health sciencesCellular and Molecular NeuroscienceViral ProteinsModel OrganismsPlant and Algal ModelsTobaccomedicineGeneticsGenomesNon-coding RNAProtein InteractionsMolecular signaturesMolecular BiologyEcology Evolution Behavior and SystematicsPlant DiseasesHost Microbial InteractionsBiology and life sciencesMass spectrometryOrganismsComputational BiologyProteinsRNA virusPlant Pathologybiology.organism_classificationGene regulationRepressor Proteins030104 developmental biologyU30 Research methodsAnimal StudiesRNAGene expression010606 plant biology & botanyF30 Plant genetics and breeding
researchProduct

The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to Botrytis cinerea and in miRNA Regulation

2020

Research into the relationship between epigenetic regulation and resistance to biotic stresses provides alternatives for plant protection and crop improvement. To unravel the mechanisms underlying tomato responses to Botrytis cinerea, we performed a chromatin immunoprecipitation (ChIP) analysis showing the increase in H3K9ac mark along the early induced genes SlyDES, SlyDOX1, and SlyLoxD encoding oxylipin-pathway enzymes, and SlyWRKY75 coding for a transcriptional regulator of hormonal signaling. This histone mark showed a more distinct distribution than the previously studied H3K4me3. The RNAPol-ChIP analysis reflected the actual gene transcription associated with increased histone modific…

0106 biological sciences0301 basic medicinePseudomonas syringaeMiRNA bindingPlant ScienceBiology<i>pseudomonas syringae</i>01 natural sciencesTomato03 medical and health sciencesBotrytis cinerealcsh:BotanyTomàquetsTranscriptional regulationEpigeneticsGeneEcology Evolution Behavior and SystematicsBotrytis cinereamiRNAGeneticsEcologyHistone modificationsfungifood and beveragesFongs patògensbiology.organism_classificationChromatin immunoprecipitationlcsh:QK1-989030104 developmental biologyHistone<i>botrytis cinerea</i>biology.proteinRNAH3K4me3EpigeneticsChromatin immunoprecipitation010606 plant biology & botany
researchProduct

Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both suga…

2016

SPE IPM INRA UB CT1; International audience; Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We prov…

0106 biological sciences0301 basic medicineRhizophagus irregularisLightPhysiology[SDV]Life Sciences [q-bio]Plant Sciencearbuscular mycorrhizal fungus01 natural sciencesrhizophagus irregularisGlomeromycotaSoilGene Expression Regulation PlantMycorrhizaeMedicagoPhylogeny2. Zero hungerMutualism (biology)Fungal proteinReverse Transcriptase Polymerase Chain Reactionglucose specificMonosaccharidesfood and beverageshigh affinity H+ co-transporterhigh affinity transporterArbuscular mycorrhizaBiochemistry[SDE]Environmental SciencesFungusSaccharomyces cerevisiaeBiologyFungal Proteins03 medical and health sciencesSymbiosisStress PhysiologicalBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyRNA MessengerGlomeromycotaObligateCell MembraneGenetic Complementation TestfungiMST5MST6Membrane Transport Proteins15. Life on landmonosaccharide transporterbiology.organism_classification030104 developmental biologyGlucose010606 plant biology & botany
researchProduct

Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under N…

2017

Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, memb…

0106 biological sciences0301 basic medicineRhizophagus irregularisMICROBE INTERACTIONSPhysiologyarbuscule[SDV]Life Sciences [q-bio]racine finePlant Science01 natural sciencesnitrogenTranscriptomeGene Expression Regulation PlantMycorrhizaeLOTUS-JAPONICUSGLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSION2. Zero hungerazotePHOSPHATE TRANSPORTERAMMONIUM TRANSPORTERSorgan transplantationGeneral Medicinefood shortageMedicago truncatulaArbuscular mycorrhizasymbiose mycorhiziennePopulusfamineEnergy sourceARBUSCULAR MYCORRHIZABiologySULFUR STARVATION03 medical and health sciencesPHOSPHORUS ACQUISITIONSymbiosistransport de nutrimentsBotanySymbiosisGene Expression Profilingblack cottonwoodCell Biologybiology.organism_classificationMEDICAGO-TRUNCATULATransplantationpopulus trichocarpa030104 developmental biologyMembrane biogenesis010606 plant biology & botanytransplantation
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomyco…

2017

Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression lev…

0106 biological sciences0301 basic medicineSaccharomyces cerevisiae ProteinsGene duplicationDuplicabilityPlant Biology & BotanySaccharomyces cerevisiaeSaccharomyces cerevisiae01 natural sciencesDivergenceEvolution Molecular03 medical and health sciencesGenes DuplicateGene Expression Regulation FungalGene expressionGene duplicationGeneticsSelection GeneticSaccharomycotinaPromoter Regions GeneticMolecular BiologyGenePhylogenybiologyPhylogenetic treeGenetic VariationPromoterGeneral MedicineFull Papersbiology.organism_classification030104 developmental biologyEvolutionary biologyTranscriptional plasticityGene expressionGenome Fungal010606 plant biology & botany
researchProduct

The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions

2016

SPE EA BIOME IPM UB INRA; International audience; Pyoverdines are siderophores synthesized by fluorescent Pseudomonas spp. Under iron-limiting conditions, these high-affinity ferric iron chelators are excreted by bacteria in the soil to acquire iron. Pyoverdines produced by beneficial Pseudomonas spp. ameliorate plant growth. Here, we investigate the physiological incidence and mode of action of pyoverdine from Pseudomonas fluorescens C7R12 on Arabidopsis (Arabidopsis thaliana) plants grown under iron-sufficient or iron-deficient conditions. Pyoverdine was provided to the medium in its iron-free structure (apo-pyoverdine), thus mimicking a situation in which it is produced by bacteria. Rema…

0106 biological sciences0301 basic medicineSiderophoreAgronomieFMN ReductasePhysiologyIronArabidopsis[ SDV.SA.SDS ] Life Sciences [q-bio]/Agricultural sciences/Soil study[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomySiderophoresPseudomonas fluorescensPlant Science[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyPseudomonas fluorescens01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundEthylene[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyGene Expression Regulation PlantArabidopsisGeneticsmedicineArabidopsis thalianaHomeostasisCation Transport Proteins2. Zero hungerPyoverdinebiologyIndoleacetic AcidsArabidopsis ProteinsScience des solsGene Expression ProfilingPseudomonasfood and beveragesArticlesEthylenesbiology.organism_classification030104 developmental biologychemistryFerricSalicylic AcidOligopeptidesBacteria010606 plant biology & botanymedicine.drugAbscisic Acid
researchProduct

Molecular Responses to Small Regulating Molecules against Huanglongbing Disease

2016

Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. T…

0106 biological sciences0301 basic medicineSucroseLeavesCitruslcsh:MedicineGene ExpressionSecondary MetabolismPlant ScienceDisaccharidesBiochemistry01 natural sciencesStarchesGene Expression Regulation PlantINFECTIONMedicine and Health SciencesInnatePlant HormonesAmino Acidslcsh:ScienceImmune ResponseGENE-EXPRESSIONMultidisciplinaryNONHOST RESISTANCEbiologyOrganic CompoundsPlant BiochemistryPlant AnatomyChemistryPhenotypeBiochemistryDEFENSE RESPONSESCANDIDATUS-LIBERIBACTER-ASIATICUS; ARABIDOPSIS-THALIANA; NONHOST RESISTANCE; DEFENSE RESPONSES; CITRUS-SINENSIS; GENE-EXPRESSION; INFECTION; PLANTS; IDENTIFICATION; TRANSCRIPTOMEPhysical SciencesHost-Pathogen InteractionsCarbohydrate MetabolismSucrose synthaseAtrazineGibberellinBasic Amino AcidsStarch synthaseSystemic acquired resistanceResearch ArticleCITRUS-SINENSISGeneral Science & TechnologyPhysiologicalImmunologyCarbohydratesCarbohydrate metabolismStressArginine03 medical and health sciencesStress PhysiologicalSettore AGR/07 - Genetica AgrariaGeneticsPLANTSTRANSCRIPTOMESecondary metabolismGenePlant DiseasesIDENTIFICATIONGene Expression Profilinglcsh:ROrganic ChemistryImmunityChemical CompoundsBiology and Life SciencesProteinsPlantBiotic stressCANDIDATUS-LIBERIBACTER-ASIATICUSHormonesGibberellinsImmunity InnateMetabolism030104 developmental biologyGene Expression RegulationARABIDOPSIS-THALIANAbiology.proteinlcsh:Q010606 plant biology & botanyPLOS ONE
researchProduct

Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

2017

Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferati…

0106 biological sciences0301 basic medicineTFs transcription factorsOverexpressionBiologíaBiFC bimolecular fluorescence complementationClinical BiochemistryCell Culture TechniquesTobacco BY-2 cells01 natural sciencesBiochemistryTBY-2 tobacco bright yellow-2DTT 14-dithiothreitolBimolecular fluorescence complementationThioredoxinsGene Expression Regulation PlantTrx thioredoxinlcsh:QH301-705.5GFP green fluorescent proteinlcsh:R5-920biologyProliferating cell nuclear antigen (PCNA)Cell cycleGlutathione3. Good healthCell biologyMitochondriaNTR NADPH thioredoxin reductaseProtein TransportDEM diethyl maleateRT-qPCR Reverse transcription quantitative polymerase chain reactionThioredoxinlcsh:Medicine (General)Oxidation-ReductionAMS 4-acetamido-4-maleimidylstilbene-22-disulfonic acidResearch PaperPCNA proliferating cell nuclear antigenOex overexpressingCell cycleNucleusThioredoxin o103 medical and health sciencesROS reactive oxygen speciesDownregulation and upregulationProliferating Cell Nuclear AntigenTobaccoDAPI 46-diamidine-2-phenylindolmCBM monochlorobimaneCellular compartmentCell NucleusCell growthOrganic ChemistryBotánicaPeasMolecular biologyYFP yellow fluorescent proteinProliferating cell nuclear antigenTBS Tris-buffered salineOD optical density030104 developmental biologylcsh:Biology (General)Cell cultureRNA reactive nitrogen speciesbiology.proteinPrx peroxiredoxinBSA bovine serum albumin010606 plant biology & botanyRedox biology
researchProduct

Trichoderma harzianum Strain T22 Modulates Direct Defense of Tomato Plants in Response to Nezara viridula Feeding Activity

2021

AbstractPlant growth-promoting fungi belonging to genus Trichoderma are known to help plants when dealing with biotic stressors by enhancing plant defenses. While beneficial effects of Trichoderma spp. against plant pathogens have long been documented, fewer studies have investigated their effect on insect pests. Here, we studied the impact of Trichoderma root colonization on the plant defense responses against stink bug feeding attack. For this purpose, a model system consisting of tomato plant, Solanum lycopersicum cv Dwarf San Marzano, Trichoderma harzianum strain T22 and the southern green stink bug, Nezara viridula, was used. We firstly determined stink bug performance in terms of rela…

0106 biological sciences0301 basic medicineTime FactorsTranscription GeneticGreen stink bugBeneficial soil microbes Jasmonic acid signaling pathway Pentatomidae Solanum lycopersicum Stink bugsCyclopentanesGenes PlantPlant Roots01 natural sciencesBiochemistryArticleHeteroptera03 medical and health scienceschemistry.chemical_compoundSolanum lycopersicumGene Expression Regulation PlantPentatomidaePlant defense against herbivoryAnimalsHerbivoryOxylipinsSymbiosisStink bugsEcology Evolution Behavior and SystematicsbiologyBeneficial soil microbesJasmonic acidfungifood and beveragesTrichoderma harzianumGeneral MedicinePentatomidaebiology.organism_classificationHorticulture030104 developmental biologychemistryNezara viridulaJasmonic acid signaling pathwayTrichodermaHypocrealesSeedsFemaleSolanumSignal Transduction010606 plant biology & botany
researchProduct